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I just discover in feb-2018 that what I’ve called Gnomons, are known as Nexus
Numbers or forward difference, backward difference etc... And the use of solv-
ing such problems (typically Integrals or Sum with an infinite number of Step)
was called Umbral Calculus. But I hope will be clear after reading all the 2
Volumes, I was gone as deep as possible inside of each problem, discovering
what was not yet fully investigated

I'm for so rewriting all my paper using the std. notation, where it is necessary / useful /
possible.

From the previous public version of this work you will find several new chapters and new
Tables, to prove my work is genuine and I hope, still interesting and new.
Reference to the "official" known math can be found at:

http://mathworld.wolfram.com /ForwardDifference.html
http://mathworld. wolfram.com /UmbralCalculus.html

Being free from what is known and what none, I was free to discover some new things seems
not jet know.

My simple point of view will not be present in books that are considered as milestone for
this field of Math like:

E.T. WHITTAKER and GIULTA ROBINSON: CALCULUS OF OBSERVATIONS

Abramowitz, M. and Stegun, I. A. (Eds.). "Differences." §25.1 in Handbook of Mathemat-
ical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York:
Dover, pp. 877-878, 1972.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press,
pp- 429-515, 1987.

Boole, G. and Moulton, J. F. A Treatise on the Calculus of Finite Differences, 2nd rev. ed.
New York: Dover, 1960.

Conway, J. H. and Guy, R. K. "Newton’s Useful Little Formula." In The Book of Num-
bers. New York: Springer-Verlag, pp. 81-83, 1996.

Fornberg, B. "Calculation of Weights in Finite Difference Formulas." STAM Rev. 40, 685-
691, 1998.

Iyanaga, S. and Kawada, Y. (Eds.). "Interpolation." Appendix A, Table 21 in Encyclope-
dic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1482-1483, 1980.

Jordan, C. Calculus of Finite Differences, 3rd ed. New York: Chelsea, 1965.
Levy, H. and Lessman, F. Finite Difference Equations. New York: Dover, 1992.
Milne-Thomson, L. M. The Calculus of Finite Differences. London: Macmillan, 1951.



Abstract: Abstract

Chapt.1: Modular Algebra vs Complicate Modulus Algebra
Introduction: Classic Modular Algebra

Definition of Complicate Modulus Algebra

Complicate Numbers as Ordinal Number

Definition of the Complicate Modulus Numbers

a) Reduced Complicate Modulus Numbers

b) Non Reduced Complicate Modulus Numbers

Definition of M,,, the Set of Complicate Numbers
Fundamental Operations with Complicate Numbers

Sum of two Complicate Numbers

How to Divide a Complicate Numbers

How to multiply the Complicate Numbers

Chapt.2: Complicate Modulus Algebra on the Cartesian Plane
Linear derivative and Pythagorean Triplets

Chapt.3 Generalization: Power as Sum of Integers Gnomons
Complicate Modulus Algebra over X-Y Plane n > 2
Telescoping Sum and The BALANCING POINT BP

How to calculate X, ;

Comparison between Exceeding / Missing Areas A = Ay
The Scaling property

Trapezoidal Gnomons

Chapt.4: A simple algorithm for the n-th Root

Chapt.5: Complicate Numbers on the Two Hands Clock
Investigating in the Properties of the Rest

Reduced and Non Reduced Complicate Numbers

Pag[7]

Pag 9]

Pag 9]

Pag[L]]
Pag[14]
Pag 6]
Pag[17]
Pag[L§
Pag[19]
Pag 2]
Pag 20]
Pag 2]
Pag22]
Pag P4
Pag 30]
Pag31]
Pag 33
Pag 35
Pag[3p
Pag[3§]
Pag 39
Pag[40]
Pag[49]
Pag[51]
Pag 54
Pag[55]



TWO HAND CLOCK n=2 TABLE

TWO HAND CLOCK n=3 TABLE

Hour’s Hand Position in the case n = 2, and n = 3

A little Physics excursus

Nexus Number’s Formula

Chapt.6: Step Sum: forcing Sum to work with Rational Index
Step Sum with Step S > 1:

The most General RATIONAL Complicate Modulus M, ,/k
New Rule for scaling the Upper Limit of a Step Sum
Chapt.7: From Step Sum to the Integral

Chapt.8: Rational n-th root with a fixed number of digit precision
Chapt.9: How to work with Irrational values

Different Irrational Complicate Modulus to represent the same value
Chapt.10: Out from the Rational:

New Proof for P!/" = Irrational

Another Infinite Descent

A turn in the real life of measuring

Complicate Modulus Algebra on the Imaginary Plane

Root of a Negative Number

Chapt.11: Relations between M, and M,/

Chapt.12: How to linearize the n-th problems

Linearization is equal to an exchange of variable

How to rewrite a Linearized Odd Power, taking the Base Factor, into the Index
Chapt.13: From x" to z! via Recursive Difference

n! as Sum of (n + 1) Power Terms coming from a trick on the Binomial Develop

Pag62]
Pag63]
Pagl64]
Pag [66]
Pag[66]
Pag[69]
Pag[76]
Pag[79
Pag[B1]
Pag[85]
Pag.
Pag 93]
Pag[9g]
Pag.
Pag[100
Pag[102]
Pag[106]
Pag[109]
Pag[109]
Pag[113
Pag[114]
Pag[115]
Pag|[116]
Pag[119
Pag[123]



A™ as Sum of (A — 1)" and the following Integer derivative

Chapt.14: The Integer Derivative Formulas, for Y = X" curve
Chapt.15: Ghost Nexus Numbers and the Ghost Composite Develop
Chapt.16: Lebesgue Integer/Rational Integration via Step Sum

Chapt. 17: What PARTIAL SUMs are

Chapt. 18:Squaring Known Curves with Gnomons:

Chapt.19: The General n-th degree Equation Solving Algorithm:
Chapt.20: The New Complicated Risen Modulus M,

Chapt.21: List of Known, adn New Rules for Sums and Step Sums
Maruelli’s All Primes Interceptor

Riemann Hypo Proof

2- How to discover the position of any primes in the primes list
3- How to find the next prime

References

Pag.

Pag.
Pag.
Pag.
Pag.
Pag.
Pag.

Pag.

Pag.
Pag.
Pag.
Pag.

Pag.

127

[ury

12

[y
—
IS

—
w
-~J

— — —
(@) IS W
[\ ~1 [\

—
D
D

— — —
o oo oo
=~ (&) (@)

—
oo
0.5}

—
Ne)
[y



6
Richardson, C. H. An Introduction to the Calculus of Finite Differences. New York: Van
Nostrand, 1954.

Spiegel, M. Calculus of Finite Differences and Differential Equations. New York: McGraw-
Hill, 1971.

Stirling, J. Methodus differentialis, sive tractatus de summation et interpolation serierum
infinitarium. London, 1730. English translation by Holliday, J.

The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series.
1749.

Tweddle, C. James Stirling: A Sketch of His Life and Works Along with his Scientific Cor-
respondence. Oxford, England: Oxford University Press, pp. 30-45, 1922.

Weisstein, E. W. "Books about Finite Difference Equations. "http://www.ericweisstein.com/encyclopedi:

Zwillinger, D. (Ed.). "Difference Equations" and "Numerical Differentiation." §3.9 and
8.3.2 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press,
pp. 228-235 and 705-705, 1995.

...ete...



Note for beginners:
- To refresh the knowledge on Sum’s Rules, you can read Appendix 1

You can find animated Gif, upgrade and other info at my webpage:

http:/ /shoppc.maruelli.com /two-hand-clock.htm

http: / /shoppc.maruelli.com /two-hand-clock/ MARUELLI-TWO-HAND-CLOCK-ANT.gif

To Send your comments to the Author use the email: robotec2@netsurf.it
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Abstract:

This paper represent my investigation, from 2008, in Sums, Power’s properties and related
problems.

The core of the work is a consequence of the Telescoping Sum Property, that allow us to
square all the derivative of the functions Y = X", via a Sum of Rectangular Columns
called Gnomons.

Year by years my math skill with (and without) this new toys rise, so each time I have to
return to the beginning of the story to rewrite all.

I’ll present here Numbers and Sums in a New Vest that will take us to Limits and Inte-
grals in a simple way, similar to the known Riemann Integral one, that probably Fermat
has discover too.

A new simple Two-Hand-Clock shows how this Additive Modular Algebra works, and gives
the name to this paper: I've called this: Complicate Modulus Algebra. It involves Complicate Numbers
that can be connected to the Set theory concept of Ordinal Numbers.

The first goal was to have a powerful instrument to attack the Power problems like Fermat
and Beal, that I finally relegated to the Vol.2 to be sure all the basic concept was fully
clear (and errors free as possible).

I discover that the representation of Rational and Natural numbers just via Complicate
Numbers, is reductive, since it is also possible to represent Irrationals, so once again, all
the paper was rewritten.

As minor consequence of the discover of the Complicate Numbers is a simple algorithm to
extract the n-th root from any Number P (also by hands). Some simple relation, like the
one between 2" and n! will be shown too.

Il the Volume, A, B, C' are usually Integers. n is used to define the exponent of the Y =
X" functions we consider in this volume, so when we talk of derivative we refer to: Y’ =
nX"1, and when we talk of "All the derivative" we mean: Y',Y”, Y"etc... in general till
the "significant one" that is for us the last depending by X (so the linear one so the last it
is non a Constant).

Since I'll refer all to the Cartesian Plane, instead of using the index i we will use X and
I’ll show how this simple trick will open a new door in the investigation of Power propri-
eties.

In the Appendix 1 I summarize All the known Sum properties, and some trick can be done
using this Sum properties.

In the Vol.2 T'll investigate in some very difficult Number Theory problems involving Power
of integers like Fermat’s The Last and the Beal conjecture, and I'll show how to approach
to Riemann’s zeros using Ordinal Numbers.



The level of the presentation is for undergraduate students so I several time repeat the
concepts also using pictures.

Stefano Maruelli

Montalto Dora, Noth West Italy - From 01-08-2008 so far
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Chapt.1: Modular Algebra vs Complicate Modulus Algebra’

Introduction: Classic Modular Algebra

In Classic Modular Algebra we cut the salami in slices of same thickness, and we have just
two case:

a) P=Kxm+0 or
b) P = K xm + (Rest # 0),

and we don’t care about the number of slice we cut, but just if we have or not a Rest and
how Big it is. And then we make concerning on the Class of the Rest, and we talk of Con-
gruences to solve our problems (etc.).

Classic Modular Algebra

\\\\\\ i N,

T b) P# km
" P=km (?) m = modulus

My question, born in a brainstorming session with my wife (wile pushing the car with my
little new son) was: Is it possible to think to a different, more useful way to (always or in
certain case) cut the Salami 7

The answer I found very quickly is YES: instead of cutting the Salami with same thickness
slice, we cut it with Rising Slices following an useful Function I've called COMPLICATE
MODULUS.

The result is that we have now in the hands a measurable collection of rising Integer Parts
and (in case) a Rest. The advantages respect to the classic modular algebra are:

1- We Always have back exactly the number we put in, so a Weighted Zeros that told us
How Many Cut we did, plus a Rest (in case).

It means that we can distinguish from the first, the second or the n.th slice (zero) we are
talking of, and this will be very useful, and let (as the case we present here), intact the bi-
jection also with the Real, Rational and/or Integer Numbers we have in the hands.

2- Once we fix the n — th power of our interest we, at the same time, fix the COMPLI-
CATE MODULUS, T call here M,, so the Class of Rest—0 shows us a Special Number of
our interest is an n-th Power (of an Integer at the moment).

Day by day from that August 2008, new interesting aspect of this initial idea was discov-
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ered and it seems there is no end in new interesting properties and /or new problems /
theorems.

Al starts from this simple table involves Newton’s develop and what I later discover are
called Nexus Numbers, that are all the recursive numbers we can obtain starting from plot-
ting integers and it’s powers. In the following example Squares and Cubes:

Integers | Power(s) | the Nexus Number(s)
X Y=XA2 | Y'_i=XA2_(I4+1)-XA2_1  Y"=Y'_(I+1)-Y'_I Y'=Y"_(1+1)-Y"_I
1 1 1 1 1
2 4 3 2 1
3 9 5 2 0
4 16 7 2 0
5 25 9 2 0
6 36 11 2 0
7 49 13 2 0
8 64 15 2 0
9 81 17 2 0
10 100 19 2 0

Integers | Power(s) | the Nexus Number(s)
X Y=XA3 | Y_i=XA3_(I41)-XA3_1 Y'=Y'_(IH1)-Y_I Y'=Y'_(I41)-Y'_l Y'U'=Y'™_(1+1)-Y"I
1 1 1 1 1 1
2 8 7 6 5 4
3 27 19 12 6 1
4 64 37 18 6 0
5 125 61 24 6 0
6 216 91 30 6 0
7 343 127 36 6 0
8 512 169 42 6 0
9 729 217 48 6 0
10 1000 271 54 6 0

Etc....
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Definition of the Complicate Modulus Algebra

All born from this simple rule:

Square of Integers as Sum of Odds

It’s well known that a square of an Integer p, is equal to the sum of the first p Odds (for
the Telescoping Sum Property):

a

o =) (2i—1)

1=1

The proof it’s very easy developing the Sum we have:

za:(%—l):aQ—(a—1)2+(a—1)2—(a—2)2+(a—2)2—...—|—1—1:aQ

i=1

So for example a =5;:a>=1+3+54+7+9=25

This simply known rule suggest me a new branch of Modular Arithmetic and Set Theory,
I've called COMPLICATE MODULUS ALGEBRA.

Complicate Modulus Algebra Idea

The above property suggest to me that this kind of division of the Squares can be taken
as example of a new kind of Modular Algebra where instead of a Fixed Integer Divisor m,
there is a F'unction that define the thickness of each following slice.

I'll present here the case where this function is a known continuous rising function, coming
from the Telescoping Sum property for Power of Integers (but will also hold for Rational,
and, at the limit, for the Reals) that produce each time larger and large slices.

So from the easy known rule for Squares (n = 2):

=Y (2X —1)
X=1

We can see the Complicate Modulus M,, = M, where the slice’s thickness linearly rise fol-
lowing the function: My = (2X — 1)

As example, in the following picture How to Cut a Salami of Length P € N in the case
we take the Square complicate Modulus, so n = 2 ; My = (2X — 1). To let things more
clear we will call p also the Integer Root of the Generic Number P we are studying. Or:

p= L)
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Complicate Modulus Algebra
Case n=2 — Complicate Modulus M2= (2X-1)

a) P= Perfect Square

b) P=NON Square

P+ A

As we can see we can distinguish 2 case:
a) P is a perfect Square, so we have no Rest, or
b) P is not a perfect Square, than we have a Rest.

We can also see that for n = 2, only, due to the linearity of the first derivative, is possible
to have the same result p? using another Complicate Modulus, T call My x 1 = (2 + 1),
but at the condition that:

- We shift the Lower limit from 1 to 0:
- We shift the Upper Limit FROM a to p — 1, thanks to the Sum properties we can write:

P:pQZi@X—l): _1(2X+1)

X=1 0

S

>
I
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More in general, this shifting Rule is true for any m € NT (in the next chapters the gen-
eral rule):

p—m p—m

pQ—iQX—l doeX-142m)= Y (2X+m)-1)
X=1

X=1-m X=1-m

So can now generalize the formula for our COMPLICATE MODULUS using

the General Formula for n-th Power written trough the Telescoping Sum:

=Y (X (X 1))

X=1

Where I've called the function defining the Terms of the Sum (coming from the Binomial
Develop): M, the COMPLICATE MODULUS

M, = (X" = (X =1)")

Now we can generalize to All Numbers, representing (for example) the Natural, called P,
Modulus M, fixing n as we need or prefer, as:

P =pM, + Rest
having a Rest = 0 in case P = p" and Rest # 0 in ALL the other case.

With this new Algebra we have back more information than the Classic Modular one since
this preserve the bijection between integers and the Complicate Modulus Numbers. And
I'll show how we can go over in (Q and R under certain conditions.

Note: Complicate Numbers vs Complex Number

There is a big difference between a Real Complicate Numbers that is an element of R, so
a point on a one-dimensional number line, that can be expressed under my conditions on
a two-dimensional real plane and a Complex Number that is an element of C and that can
be represented just on a two-dimensional complex plane, since the Rest, vice versa from
the Imaginary Part of the Complex, strictly depends on what we choose as Integer Root.

It means that Rest and Integer Root are connected with a sort of Gear, while this doesn’t,
usually, happen in a Complex Number, except if we fix a Relation between the Imaginary
part, and the Real one.
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Complicate Numbers as Ordinal Number

In late "900 the ZFC set theory jumps on the math scenario adding several new concepts
on of those is the Ordinal Number.

I'll introduce here the Ordinal Number concept without saying more on that, but we use
them in the Vol.2 to prove Fermat the Last. At the moment, it’s just necessary to know
that:

Here I call the Ordinal Number M,, = (X" — (X — 1)") the Complicate Modulus since
we can use it to represent any Natural Number as Sum of its Greatest Integer n-th Root,
plus an Integer Rest. In case we are talking of Squares we can (usually) write:

P= (Integer n-th Root)™ + Rest or using the proper Math Floor Brace |...| Symbols (ex.
n=2):

P= L\/ﬁf + (P - L\/?JQ) — |V P| M, + Rest
And more in general:

So we have a bijection from N — M, where M, is the Set of this Complicate Numbers,
base n we have chosen, as shown for example in the next Table:

Table 1: Naturals rewritten via My = 2X — 1 so as Square plus Rest

X Ms Rest

1 1 0 =1240 =1My+0
2 1 1 =124+1 =1My+1
3 1 2 =1242 =1My+2
4 2 0 =2240 =2M5+0
5 2 1 =2241 =2M5+1
6 2 2 =922492 =92My+2
702 3 =224+3 =2M,+3
8 2 4 =224+4 =2M,+14
9 3 0 =3240 =3My+0
10 3 1 =3241 =3M,+1
11 3 2 =324+2 =3My+2
12

Here I'll call the ¢ — estm Square Gnomon the ¢ — th value it will assume Ms, so:

So it’s similar to the well known Modular Arithmetic, where Squares just, are our Zeros,
in fact:

If and only If P € NT; P = p? then we have Rest = 0,
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As I'll present in the Chapt.4, the big difference with the Old Modular form, is that now

we have a New Clock that Shows us the Right Hour All Day Round, and moreover, it shows
us exactly when our Number P is a certain n-th Power, we decide, of an Integer p, or not.
So, for example, there is no longer confusion like between 12 and 24 that are indistinguish-
able modulo 2, and numbers (squares for examples) 1,4,9,16...z%, will be always in evi-
dence to the observer, for example, still if randomly written in a list of integers.

Another example of the bijection in case n = 3

Table 2: Naturals rewritten via Ms = 3X2 —3X + 1 so as Cube plus Rest

X M3 Rest

1 1 0 =1340 =1M5+0
2 1 1 =1341 =1Ms+1
3 1 2 =134+2 =1M3+2
4 2 0 =134+3 =1M3;+3
5 2 1 =134+4 =1M3;+4
6 2 2 =134+5 =1M3+5
702 3 =1346 =1M5+6
8 2 4 =240 =2M3+0
9 3 0 =241 =2M3+1
10 3 1 =242 =2M3;+2
1 3 2 =224+3 =2M3+3
12 3 3

=23+4 =2M;+4
13

So more in general, but not jet in the Most General Case, we present a Complicate Num-

ber as:

i P/
PeR:P= (LP“/")D + Rest=Y_ M, + Rest
X=1

Or in the new Complicate Modulus notation as:
PeNorPeQorPeR:P=pM,+ Rest

As we will see in the next pages there is a more general series of Definitions for a Compli-
cate Number.



17

Definition of a Complicate Numbers:
After presenting the Complicate Modulus Numbers in the "soft, informal" mode, is time
for a General Definitions:

A Complicate Modulus Number P, (from now: Complicate Numbers, just) is a number
that can be expressed in the form:

P =p" + Rest
Where more in general than what presented in the previous pages:
(P, Rest, p) € R

And of course p is often defined as:

p=[(P")]

where for the non expert [, | is the Floor operator that return the Integer PartO f what

in the middle of this special Bracket. Often, since it is the most useful representation (so a
special case of Complicate Modulus Number representation, we will see later) but of course
p can also be any integer under the right conditions.

Definition of what a Rest is:

The Rest is considered an often (not always) Positive Number, and trivially defined as:
Rest=P - p M,

Where using a new notation that helps to understood we are talking of a Complicate Num-
ber, and considering that the Rest can be taken with a sign we decide, we can write:

P =pM, + / — Rest

As we will see in the next pages in CMA the Rest can assume a value that is Bigger than
the Power we are analyzing, so it will require some care working with it.



18

So under a series of conditions I'll show better later, we can distinguish several Class of
Complicate Numbers:
1) Integer Complicate Numbers:

Is the most used and happen when:
(P, Rest ,p) € N;

Another possible, sometimes useful, Class is:

2) Rational Complicate Numbers:

(P and/or Rest and/or p) € Q

3) Real Complicate Numbers:

Is the widest class, and can be divided in:

3a) Real Complicate Integer Numbers:
(P, Rest) e R ;peN,;

3b) Real Complicate Rational Numbers:
(P, Rest) eR;peQ;

3c) Real Complicate Number:
(P, Rest ,p) € R ;

And in each of the previous Class we can define other 2 Sub-Classes depending on the Rest:

a) Reduced Complicate Modulus Number, is defined as above:

Lp(l/n)J
P e R|P = pM,, + Rest = (LPW")D” + Rest = Z M, + Rest
=1

Where (again) p = |[(PY™)]

So p is (usually) the Maximum Integer n-th Root of P (as defined by the Floor Brace op-
erator), and the Rest is the Minimum Rest we can have once we choose the desired n and
the Maximum Integer n-th Root p = pa. (in case we are working with what we define a
Reduced Complicate Modulus Number)

The Rest for a Reduced Complicate Modulus Number, here representing an integer Inte-
ger P written as P = p" + Rest is for so bounded by the Rules:

Rest i, =0
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ReStMax(P) = Mn|x:p'maw = [(pmax)n - (pmaz - 1)”]

So in words talking of Reduced Complicate Modulus Number, the Resty;q., for so also the
generic Rest of such Reduced Complicate Modulus Number, are both strictly littlest than
the Next Power (p + 1)" and of course also of the Next Gnomon M,,|,—,+1 value.

I've shown the case we choose an Integer Complicate Modulus, because it require more
concerning in the other case we will see later (there is also a Non Integer Complicate Mod-
ulus Algebra !)

We can also ask who is the Better Optimized choice for p and n to let the Rest be the
Absolute Minimum Rest, especially in the case P € R, opens another branch of math
(I call it another Black Hole... since very wide, deep, and hard to be studied)

Similar cases are studied in Classic Math in Diophantine approximation and are known as
Roth’s theorems (etc.).

From Wikipedia:

In mathematics, Roth’s theorem is a fundamental result in Diophantine approximation to
algebraic numbers. It is of a qualitative type, stating that a given Algebraic Number a may
not have too many rational number approximations, that are -very good-. Over half a cen-
tury, the meaning of very good here was refined by a number of mathematicians, starting
with Joseph Liouville in 1844 and continuing with work of Azel Thue (1909), Carl Ludwig
Siegel (1921), Freeman Dyson (1947), and Klaus Roth (1955).

Where I remember: an Algebraic Number is any complex number that is a root of a non-

zero polynomial in one variable with rational coefficients (or equivalently -by clearing denominators-
with integer coefficients). All integers and rational numbers are algebraic, as are all roots

of integers. The same is not true for all real and complexr numbers because they also in-

clude transcendental numbers such as m and e. Almost all real and complex numbers are
transcendental.

b) Non Reduced Complicate Modulus Numbers:

I hope is now clear we can write a number P as:

PeR:P=pM,+ Rest

Where we have two case (so we call the root a instead of p to distinguish it better):

1)a < LPW”)J , so the Rest is NOT the MinimumRest, so it is bounded in function of
how big is the a we have chosen.

2) M, itself can be a NON Reduced Complicate Modulus, so, more in general it can be:
M(nr), = [r(X") —r(X — 1)"]; (X, M,) € Q;(r, Rest) € R

Where: r is a constant, for example, useful to better shows

Perfect Powers P=r*a™ +0



20

In this Volume where I wanna show the basic of this Algebra, usually r = 1, but more
often while working on real problems is r € Nor r € Q ).

I’ll show more ahead in this Volume, and in the next Vol.2, that can be also » € R under
certain conditions (for Fermat Last Theorem For example and in case we work with Irra-
tional Numbers), for example depending by Known Irrational Factors.

Where Rest: is the Rest, so what cannot be, or is not written trough the n-th power of
a™, or its multiple r x a™.

In this class the Rest has larger bound is: Rest < P

The trivial case: Rest = P is, of course, useless.

And where a is for so bounded by:
0<a<|[(PY")],aeN

The most General Definition for P € Q and for P € R will follows after we have made a
little tour on what we can do with this numbers.

Definition of Mg, the Set of the Real Complicate Numbers:

We can now give a name to the biggest Set of the (generic) Complicate Modulus Numbers
that, as already shown, will depend on the Complicate Modulus M,, or M (nr),we chose as
Base of our bijection. We will call:

M, = the Set of Complicate Modulus Numbers base n
After the definitions I’ve already given is clear: Mr = R
We, mostly, investigate in some Sub Set of Mg, like N* or Q"

As told We can also create an Imaginary Complicate Number (etc...), but this will not in-
vestigated here.

Some concerning on the Complicate Numbers:

- The fact that we can distinguish from Reduced and Non Reduced Complicate Numbers
will probably give some property I not jet investigate here, but I suspect it will be con-
nected to the Proof of the Beal Conjecture will follow in the next chapters.

- In Classic Modular Algebra the C'llass of Rest are an important part of that theory, while
here I’ve not jet investigated if some property of the Rest will be useful and where, still if
I'm quite sure "it will be somewhere" once well studied.

The most general Complex Complicate Modulus Number definition follows from the
above definitions and the classic definition of a Complex Number. I've not jet investigated
this field.
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I’ll present hereafter how a Complicate Modulus Number behave during classic known op-
erations.

After that I'll present a nice easy way to show on a Cartesian plane who is a Reduced Com-
plicate Modulus Number (from here a Complicate Number) and its Gnomons.
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Fundamental Operations with Complicate Numbers:

For "classic” computation this numbers are not useful, in fact:
Sum of two Complicate Numbers:

Unfortunately the Sum for example: A =5 = 2M, + 1 and B = 11 = 3M, + 2 cannot be
done so easy as to Sum the Integers A+ B = 5+ 11 = 16, because the Clock change Num-
ber of Division Each Turn, so the Rest and the Integer Root, cannot be simply summed
one by one, but we need to return each time to the Original Integer Numbers we are con-
sidering and then make the computation:

- We have to re-transform the Integer Root of A and the Integer Root of B in the corre-
spondent Powers (So in Natural Numbers):

2My+3My; =4+9 =13

Than we can Sum the Rests:

(1) +(2)=3

Than we have the result:

A+ B=(13)+(3) =16

Than we can return to our My base:

A+B=2My+1)+ (3My+2) = (13) + (3) = 16 = 4M, + 0

Difference of two Complicate Numbers:

The difference follows in the same way, so the Integer Root Part has to be transformed
again in a Natural Number:
Having for example: A =5=2Ms+1; B =11 = 3Ms + 2 we have:

B — A =11-5=6 so to perform the subtraction: (3Ms +2) — (2M5 + 1)

- We have to re-transform the Root into the Natural Numbers, then we can subtract:
3My —2My =9 —4=15

Than we can Subtract the two Rests (with sign, in case is negative):

2)-(1)=1

Than we have the result:

B—A=(5)+(1)=6

And then we finally transform 6 in a Complicate number base Squares, and we have our
result: (3Ms +2) — (2My + 1) = (2M3 + 2)
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Interesting case in the Sum of Complicate Numbers:
We know that there can exist some triplets A,B,C' for what:

A%+ B? = (C?

so for certain (A, B) happens that A? + B? € N*"

But this is an exception to the general Rule for Summation of Complicate Numbers (so
also for Powers of Integers) that state that:

The Sum of two or more Complicate Numbers, having both Rest equal to Zero
is not, always, again a Complicate Numbers having Rest equal to Zero.

Fermat understood (and claim to have a proof) that it’s true that: A" + B" <> C™ if
n>2

I'll prove this result in the next Vol.2 using the property we will learn in this Volume (still

if till now all this can seems an useless complication, just).

We will see in the next chapters, when we present our Complicate Clock that there will be
another way to Sum the Complicate Numbers, involving a New Clock and the angles of
the Hands.

How to Divide a Complicate Numbers:

Having for example: B=10=3Ms +1; A=2=1Ms + 1 we have:
B/A=10/2=5s0: BMy+1)/(1My+1) = (2Ms+1) =5

- Where again we have to return A and B in N, make the division, than return the result
to the new Complicate Number.

So there is no sense to do this operation.
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How to multiply the Complicate Numbers: Rule is the same we use for Bi-

nomial Product, or Complex Numbers:
Having for example: A =5=2Ms;+1; B =11 = 3M; + 2 we have:
A-B=5-11=55s0: (2My+1)-(3My+2) =55

- For the Integer Root Parts we can make the direct multiplication, but we have to return
in N:

U ntroot = (2M3) - (3My) = 6My = 36

and Both the Rests we can make the direct multiplication:

Mpest = (1) - (2) =2

- While We have to re-transform in the Natural Numbers for the Mixed Products:
a1 = (2M3) - (2) =4-(2) =8

ppize = (3M3) - (1) =9-(1) =9

Result = ntroot + Hrest + Harizr + Harizao =36 +2 4+ 8 +9 =55

A-B=(2My+1)-(3My+2) =TM>+6

The Product seems again an useless work, but suggest us that there are 3 types of Compli-
cate Numbers:

- Pure Powers: p = A" = aM,,

- General Complicate Numbers

p = abM, + Rest

That are able to cover N, but nobody can deny us to use also:
- Multiple of Pure powers: m - A" = m - alM,

This will becomes useful to investigate on Fermat’s Last Theorem that will state that there
cannot be a solution for n > 2 in N” to:

A B
C"=A"+B"=> M,+Y M,
1 1
So, thanks to the Sum properties, it can be written as this symmetric formulation:
C" =2A"+ A and /or
C" = 2B" — A with Delta = Y%, | M,

Where is clear we need to investigate the curve y = 2z™ via a[2M,,] Complicate Modulus.
(See Vol.2: Fermat the Last Proof)
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Chapt.2: Complicate Modulus Algebra on the Cartesian Plane:

Remembering what known from Classic Calculus, so that the value of the abscissa on an
integrable function (here a parabola) is equal to the area of it’s derivative till it’s Abscissa:

e &
P it's equal to the Area Below the first Derivative till A

so it is equal to the Integral of the First Derivative till A

Y A Y=x°

© Stefano Maruelli

L ¥

As seen in the most simple example for Square, the Complicate Modulus My = (22 — 1)

produce odd numbers (1,3,5,7...,2¢ — 1) that can be represented on a Cartesian plane in

the form of Rectangular Areas called from now Gnomons defined (till a more general
definition will be given in the next chapters) by:

Base=1 (fixed value) : Height= M, = (2X — 1)
Where the i-th Gnomon’s height is M, ; = (2i — 1).

To well represent the Gnomons on the Cartesian plane, and to show it is connected to the
area of all the derivative of Y = X" I need to change the Label’s Index, from ¢ to z since
becomes, as told, the i-esim Gnomon we are talking of :

A
A=) (2X - 1)
X=1
I'll also use the uppercase A from now on, since this work started in this way in 2008, from
the Fermat’s A,B,C letters.
This Columns are the key of all my work. Here on the graph you can see how the Gnomons
square the Linear First derivative Y/ = 2.X:
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" Derivative and GNOMONS, so Integer Derivative |

) First Derivative Y'=2X
A=9 Y=o .
First Integer
Derivative
Area Gnomons e
6 | Below the Yi=Mz,=2X-1
'V Derivative . Y/ ~Mz.= Complicate
2 e Modulus for Square
4| A=(6:3)2=9 | | //
T 2 2
/| A'=1+3+5=9
1 it
3 © Stefano Maruelli / 3 © Stefano Maruelli
Area Below the Derivative till A is A’=Area of All the Gnomons till A
5 A A
A = 2X dX = (2X-1)
N - X=1 Y,

—y?2
Y=X v

A*=11+31+51 =9

First Derivative
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In the following picture it is better shown the relation at the base of this formulation be-
tween: Sum of Gnomons and the Integral of the first derivative.

/
CONTINUOS Derivate VS INTEGER Derivate

2
Y=X
Y A Y A
Y'=2X Y’=2X

3
2
3 = I2X dX
X=0

2x dX
+
4 S 2X-1
L3 bl / 3= Z( )
X=1 e 2
/ A
1 /- A2

01 2 35 R R o

We know by the Integration method (or by the classic Triangular formula b % h/2) that the
Triangular Area (Red Border) below the First derivative till A, is A%, but we can square
this Area also using the Rectangular columns called Gnomons (here in Grey).

\[

This property can be extended to All Powers of Integers and to all the following (non flat)
derivative.

We need to define few parameters on the picture to let be more clear what happens:
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s ™
The first Derivative can be squared till an integer A

by a Sum of Integer Gnomons: Mg x =(X*- (X-1)*)

A

Gnomons M2 v 2X-1=1,3,5... 2A-1

4 2 < ’
1 3:2(2X-1)=1+3+5=f2xdx=9
Y X=1 x=0
1
2 o > o
71 2 A=3 X

© Stefano Maruelli
/

Figure 1: Gnomons squaring the First Derivative, and the First Integer Derivative

The telescoping Sum property has a Geometric reason: Gnomons square the First Deriva-
tive, thanks to the property Missing Area = Exceeding one
- The function Y = X™, in the case n = 2 has a linear derivative: ¢y = 2z

- So it’s possible to use the Gnomons (in Grey) to Square it,

At the condition that for each column of base z; — z;_; € N

- the Exceeding yellow Area A" between the flat roof of the Gnomon and the first deriva-
tive,

- is exactly equal to the Missing yellow one A™.
For Square Powers of Integers, each Gnomon has:

- an unitary Base = 1 (we can see later the base can be different, under certain conditions,
without loosing this property)

- an Height that rises of a linear value that lies on what I'll call:

Linear Integer derivative: y, =2z — 1, s0 1,3,5...(2zi — 1)

But we have to go deeper now to investigate all the properties of this new subject.
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The first Derivative can be squared till an integer A
A by a Sum of Integer Gnomons: Mn|,=(X"- (X-1)")
Y

= A /Y=2x because for Power’s Derivatives (parables)
Surplus area is equal
to the Missing one A

In case of n=2 the balancing point Xm is
exactly in the middle.

© Stefano Maruelli

While for all n>2 is at an irrational coordinate.

/ 1 2?3 4 )X
\ Xm © Stefano Maruelli/

Figure 2: Gnomons squaring the First Derivative because Missing Area = Exceeding one

For n = 2 the derivative is linear, so it’s clear what happens:
- it cuts the Roof of the rectangular Gnomons exactly in the middle,
so we have that for each Gnomon: r = ¢ and Yr =Yyq

So the Exceeding area A™ is exactly equal to the missing Area A~ not just in value, but
also in shape (triangular), so they have both the same Base, here 1/2 and the same Height,
here equal to Yr =Yq=1.

It’s also clear that the Gnomon’s Roof given by the 2z; — 1 formula is always an integer
Value, for each Integer x;,

Calling: Balancing Point the intersection between the First derivative and the Gnomon’s
Height. It has coordinate: (zm;,y;) where:

X X, — X;_
Xy = 1+ (2 1

— Xmﬂ' EQ

The fact the the Medium Point Xm; is equal to the Balancing Point BP is due to the Lin-
ear First derivative.

This is no longer true for n>2.
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COMPLICATE MODULUS M: and
A=A
» \= "1V Yq=Yr
— YrJ A\ Gromon's Roof

/ \Balancing Point
Yi =

e
/'35 r=q=%

© Stefano Maruelli }

Xia 1 X X
Xm

Linear derivative and Pythagorean Triplets:

For n=2 just, if we define two integer abscissa x1 = A, xo = B, there will exist an infinite
number of integer x3 = C' for what:

A’ + B?=C?

Pythagorean Triplets are possible because for n=2 the First derivative is Linear, so X,, =
BP, the Second derivative is constant equal to 2, then moving right of any integer dx the
area bellow the first derivative always grow of such constant value, and this assure that
any new area is a Trapezium that itself respect the property X,, = BP

I stop here the concerning regarding this property since it will be presented in the Vol.2
when I'll present several reason why Fermat the Last theorem can be proved right. T just
add here a trivial concerning;:

Since the equality holds for those triplets, it will also holds the equation, with a € R:

aA? + aB? = aC?

This will lead to known concerning about the pxq factorization problem we will not discuss
now.

Calling P* the Set of the n-th Powers of Integers, is In General true that with A, B,n In-
tegers:
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A"+ B" ¢ P*
except for n = 2 where we know there exist an infinite number of Pythagorean Triplets.

Due to the Telescoping Sum Property I'll show in the next pages that we can use the same
squaring process for higher n, so also when the derivative is a curve. Again we can square
the derivative with Gnomons because for any n < 2, and for any Following derivative of
the curve of the type Y = a X", the Exceeding area A" will equate the Missing A~ one.

This will happen still if the Exceeding / Missing Areas are no longer triangles, so they
have not just different Bases and Heights, but also different shapes since the Left Exceed-
ing Areas has a Concave Upper Border, while the right Missing one has a Convex Lower
Border (see picture in the next chapter). The telescoping Sum Property, for example will
not holds true for other curves, Hyperbola and Ellipsis, for example (as I'll show at the
end of this Vol.1).
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Chapt.3 Generalization: Powers as Sum of Gnomons:

Theoreml: from n = 2 it’s possible to square all the following derivative of YV =
X" using the Complicate Modulus M, that fullfit the area below the derivative
till an integer A, with Sum of Gnomons. in fact:

A

A= 3t (- 1)

r=1
So in the same way we did for n = 2 we can describe any Power of an Integers using a
Sum of proper Ordinal Numbers I've called n-th Gnomons (as I told in the pre-face this

are known as the Nexus’s Numbers, but my definition is more detailed as you will discover).
Where I define:

Complicate Modulus n-th the operator M,, = [2" — (z — 1)"]
Gnomon each value: M, ,, = [2" — (v — 1)y, = [z} — (2 — 1)"]

I remember is important to left x as variable, or index, and ¢ as the ¢« — th value of such
variable.

The proof it’s simple since this comes from the Binomial develop and from the most known
Telescoping Sum property I already present here for n = 2. If we develop the sum we can
immediately see that:

A

A= " = (r 1) =A" = (A= D)+ (A-1)" = (A-2)"+(A-2)"— .. +1-1=4"

=1

I call M,, =Complicate Modulus since it can be easily figured out from the classic mod-
ular arithmetic seeing that

it can cut any integer P € NT with rising slices of dimension
M, = (2" —(x—1)"), Rest =0

if, and only if P = A" ; A€ NT .
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Table 3: Naturals rewritten via M3 so as Cube plus Rest

X M3 Rest

1 1 0 =1340
2 1 1 =134+1
3 1 2 =13+2
4 2 0 =13+3
5 2 1 =1344
6 2 2 =13+5
702 3 =13+6
8 2 4 =240
9 3 0 =234+1
10 3 1 =242
11 3 2 =23+3
12 3 3 =234+4
13 3 4 =224+5

This holds true for A and n integers, but I'll show we can go over in QT in the next pages.

As example for n = 3, the term M,, = [z" — (x — 1)"] becomes:

My = (32 — 3z + 1)

To easily remember, keep Tartaglia’s Terms for (z — 1)3, remove the first term and change
the sign of the other, so we have:

A
A=Y " (32" =3 +1)

r=1

And so on for bigger n, following Tartaglia’s triangle.

In the next pages I'll present again this case on a Cartesian Plane, hoping will be more
clear (if necessary) why I use in all this work x as Index instead of the classic mute index
m or i: in my representation it’s, de-facto, the x coordinate on the Cartesian plane, and
calling it 'mute’ has encouraged peoples to discard to investigate more on it.
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Complicate Modulus Algebra over X-Y Plane for n > 2:

What differs from n = 2 is that:

1) from n = 3 while continuous function Y = X" and its Continuous derivative
Y’ =nX" (and followings) are INVERTIBLE,

once we pass (n > 2) via the Integer derivative to the Integer Gnomons, we
abandoning CONTINUITY and we Loose INVERTIBLE property.

2) again the Exceeding Area A" is equal to the Missing one A~ for the Tele-
scoping Sum Property, and we can easy prove this.

3) Very important difference is that we LOSS, from n > 2 the same (triangu-
lar) Exceeding/Missing Area shape property, so they not just differ by size of
the Bases and of the Heights,

- But they also have no longer the Same Shape at all, since the Left Missing
Area A~ (Red one) has a Convex Lower Border, while the Right Exceeding A"
(Blue one) has a Concave Upper Border.

And we will be also cleat that since the curvature of the First derivative, becomes Lower
and Lower rising x (and or n) also the ratio r/q will change going closer and closer to 0.5
rising  and or n. Here one example on the picture where to distinguish the points I've
Scaled Lot z/y to see the Curvature is in the real picture z/y = 1 very close to a line also
for lower value of z and n.

Here the example of how a power Y = X3, can be represented squaring its derivative
Y’ = 3X? via Gnomons (Red Columns width=1), following what T call Complicate Modu-
lus Height (Black LINES):

We can for so represent a power of integer, i.e. 103

3

- as a point on the curve y = x°, or as an area bellow its first derivative, or

- as a Sum of Segments Ms|,—; = 322 — 3z + 1, for x from 1 to 10, that is also equal to the
Sum of the Areas of the Gnomons BASE = 1 and height:
M;s; = (3X? —3X 4+ 1)x; =3i* = 3i+1

Such Integer Gnomons always perfectly Square the derivative Y/ = nX" ! for any X €
N*.

This means that respect to the derivative Y = 3X? the Missing Area A~ on the Left is
always Equal to the Exceeding Right one A*.

As the Telescoping Sum, the Balancing Property also works for all the Following deriva-
tive.
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(" ™
POWER Y=X’ and COMPLIC?TE MODULUS (GNOMONS)
X 3XA2-3X+1 x?
] ) 1 Gnomon's Roof 2l

2 1452
3 19 27 — - 1387
4 37 64 M, 5 3X"-3x+1 I
5 61 125 3 "—/11251
6 91 216 X ~_ Pl
7 127 343 >
8 169 52 |14 = /ﬁ \\_ o
9 217 729 ) Az
10 271 oo ) E pEdl
; =" | |Derivative
e -
‘ . ’_m; = \\_ Y _3X
% ’THTHB
1 03 B, 2r e E{‘T 7 | —— DERIVATE CF (x|
© Stefano Marell (" g j " "~ Y'= 3X2'3X+1 ‘_::Z:Z:;r::
- 61 _~91 - ! : — X3 Power
.
|\ 10 /

An easy useful example of this property is given in the case n = 3 where the first deriva-
tive is 4/ = 322 and where to find the balancing coordinate x,, we have to solve the equa-

tion:
3X7 =3X?-3X+1
As told all that works thanks to the Telescoping Sum Property.
The proof it’s very easy developing the Sum (as made for n = 2) we have:

A
A=Y (X" (X -1 =A"—(A-1)"+(A-1)"—(A=2)"+(A-2)" - . +1-1=A"

X=1

Here after I’ll show as example also the case n = 5 where it’s clear that:
In case n > 2 the derivative is a curve but the Balancing Property always holds.

Summarizing we prove that the Sum of Gnomons Base=1, height:

M, = (X" = (X —1)")

calculated from 1 to an integer A,
is equal, in area, to the area below the (here in blue) derivative 3’ = nX ™ from 0 to A

I call the (here in green) continuous function Y/ = (X" — (X — 1)"): the Integer deriva-
tive where it’s clear it has nothing to do with the concept of the derivative since is a func-
tion that define the Right Upper corner, so the Height of the each Gnomon.
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Telescoping Sum and The BALANCING POINT BP

All what I wrote till now is based on the Telescoping Sum Property, that can be seen as

the capability of the curve of the type 3/ = nz" ! to be squared with Gnomons, so having
a certain point, I've called the Balancing Point BP, that lies on the first derivative, and is
the one for what: The Missing Left (Red) Area (A™) will equate the Exceeding one (A™).

We first start to calculate the Abscissa X, that satisfy this condition, then we must now
discover who is the BALANCING POINT BP , to prove it has Always IRRATIONAL

coordinate X, ; if n > 2.

We aready know now that the Height Y, ; is the Integer (for now) Height of our Gnomons,
so it is: Y, ; = M, ,, that is, for example in the case n = 3 equal to: Y5, = 3X,L-2 —3X;+1
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Yi i—Derivate

Stefano Maruelli §

Derivate

How to calculate X, ;:

To calculate x,,; we have to write and solve the equation:A™ = A~ and we can distinguish
in two case: n = 2 so when the First Integer derivative ¢/ = 2X — 1 is linear, and n > 2, so
when the First Integer derivative ¢y = (X" — (X — 1)") is a Curve.

For n > 2 the derivative is a curve, so we need to use the Integral to solve the Balancing
Rule.

AT =A"

That becomes:

Tm,t X4
(X — Xiz1) * Ym, — / na" "t = / na" "t — (i — Tmi) * Ym,
Tm,i

Ti—1

Still if we know how to solve it, we need to make many other concerning on our Compli-
cate Modulus Algebra, before prove that X, ; is always an Irrational if n > 2 and that will
be the goal of this first Vol.1.

After that we will have all the knowledge necessary to try to prove more complicate prob-
lems involving Power’s od Integers, like Fermat the Last, but also of Rational.

We note that for n > 2 due to the Curved derivative, must be X,, # % so must be
r>q.
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But to prove X,,; is always an Irrational if n > 2 I’ll follow 2 ways, both will look in how
BP is geometrically fixed.

- the first one involve simple concerning on the relative position of BP respect to known
things: the Medium (or Center) Point M P,

- the second one will show that we can pack X, between Two Following Integers, and then
Between Two Following Rational depending by a factor 1/K, and then we continuous ab
infinitum this process, so we can push to the Limit the divisor K,

and just at that point we will rise X,,,, so it can be just an Irrational. But to do this we
need to show how we can play with Rational Gnomons, and this will require a new Chap-
ters hereafter.

This process is known as Dedekind Cut. It sound like an Axiom, but we will prove it.
For now what we can immediately see is:

- We discover that due to the Telescoping Sum Property, without making other concerning
than the one involving Integer Numbers and Proportional Areas, for any Parabolas YV =
aX™ in any derivative (also the following) the Exceeding Area AT will equate the Missing
one A™, |

- But once we ask how much the value of such areas is the only way, for n > 2 to calculate
them is to go infinitesimal and make the integral.
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Comparison between Exceeding / Missing Areas A = A::

Is clear that while below a Linear derivative Y/ = 2X following Exceeding/Missing Ar-
eas has always the same Area, independently by the Abscissa we choose, bellow a Curved
derivative 3y’ = nX"! with n > 2 there is an Ordinal Rule between Such Areas, that all
will converge to a Triangular Area once n — oc.

Calling A the i-esim Exceeding Area, and A; the i-esim Missing Area, below a curved
derivative will always hold true this list of relations:

1) Af = A7

2) A;;k < A; for any £ >= 1 because going Right a Curved derivative becomes more

Steep and Flat, so the Exceeding Area of the Next Gnomon will be littlest than the Previ-
ous Missing one. For the same reason will be true that:

3) AL, < A forany k >=1

4) A, < A forany k >=1

This property is in connection with the Fermat Last Theorem in a way will be explained
in the Vol.2.

Here is how X, ; behave rising X, in the example n = 3:

Xia|xi| XmJ | i Variati f Xm{i
1 2 0577350269 0.577350269 arla Ion o m{l’x}
2 3 1527525232 0527525232 059
3 4 2516611478 0.516611478 2
4 5 3511884584 0511884584 . . — .
5 6 4509249753 0.509249753 3X| -3X|‘|'1 ol 6Xm_|
6 7 5507570547 0507570547 058 -
7 8 6506407099 0.506407099
8 9 7.505553499 0505553499
9 10 8504900548 0.504900548
10 11 9504384953 0.504384953
11 12 105039675 0.503967504 057
12 12 1150362262 0503622618
13 12 1250333289 0503332889
14 12 1350308607 0.503086067
15 12 1450287328 0.502873279 0.56
16 12 1550268794 0502687939
17 12 1650252506 0502525059
18 12 17.50238079 050238079
19 12 1850225212 0.502252115 055
20 12 19.50213664 0502136635
21 12 2050203242 050203242
22 12 215019379 0.501937897
23 12 2250185178 0501851776 054 -
24 12 2350177298 0501772983
25 12 2450170062 0.501700621
26 12 2550163393 0501633935
27 12 2650157228 050157228 053
28 12 27.50151511 050151511
29 12 2850146195 0501461951
30 12 295014124 0501412396
31 12 3050136609 050136609
32 12 3150132272 0501322724 0.52
33 12 3250128203 0501282026
34 12 3350124376 0501243758
35 12 3450120771 0501207708
36 12 3550117369 050117369 051
37 12 3650114153 0501141535
38 12 37.50111109 0501111095
39 12 3850108224 0501082236
40 12 3950105484 0501054838 05 -
41 12 4050102879 0501028794
42 12 41501004 0.501004004
43 12 4250098038 0.500980381
44 12 4350095784 0.500957844 049
45 12 4450093632 0.50093632 Y e . - o 0 e
46 12 4550091574 0.500915742

As you can see X, ; goes fast close to 0.5 and for higher n, due to the less curvature, we
know it goes faster and faster close to 0.5.
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The Scaling property: What will be very important to remember is that Scaling

on the Cartesian plane the representation of the curve Y = X" in X, Y or X, Y leaves
unchanged the result.

We do not give here a proof since is very simple and evident that if the Telescoping Sum
Holds, then it Holds true independently by the scale factor X/Y we choose, so if we as-
sume the same scale for X, and Y or we stretch one of them.

And this holds true also if we scale for example X of an irrational value f.e. V2. And this
let us suspect we need to investigate more.
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Trapezoidal Gnomons:

To open another Graphical parenthesis, for those understood this method, will be proba-
bly clear at this point that nobody denied us to keep, instead of a Rectangular Gnomons
a Trapezoidal Gnomons, capable entirely cover the area bellow the derivative between two
integers.

In the case n > 2 the Trapezium has to mediate the curve between the selected points

as in the following picture. The equations bellow this new Gnomon is not included in this
work since just question of make some more concerning on how to equate the Exceeding

/ Missing Areas and because the most simple way to find it is to remember we already
define a flat roof Gnomon so is enough to 'turn’ the roof around its medium point sure
that in this way we holds the same area bellow the new non flat roof. Of course rotating
around the center of any angle the area of the Gnomons rest the same, but there is a spe-
cial angle for what the chain of roof becomes continuous, so it has interesting consequences
for those who loves to find who are those ’special’ a; = b;_; and b, = a;4; numbers let the
chain.

- . a
Trapezoidal Roof (Red) Gnomon Derivate

CE T T ST

- J/

While in the case the derivative is a Line the new Trapezoidal Gnomons can be exactly
equal to the derivative, also in shape.

Avoiding to re-make the trivial concerning on how to equate the Exceeding / Missing Ar-
eas, it has interesting consequences for those loves special numbers.

Here I'll present some case of interest, because the non trivial fact on what is possible to



42

go on in the investigation is that the new Gnomon’s Trapezoidal Roof is a Chain of Non
Disjoint Segments, so another "magic" property was discovered:

the difference of height between Y7 on the derivative and the new eight a;_; that fix the
point where the new Linear Gnomon’s Roof X;,; starts, is exactly equal to the distance

between Yi and b so the point where the previous Gnomon’s Linear Roof was stopped.

Here an example of Trapezoidal Gnomons Roof: the known values 1, 7,19, 322 — 3z + 1 can
be rebuild by trapezoid using the simple concept to have a triangular top that hold the
equality At = A~ and a rectangular base. New series of numbers was added in Oeis.org
by the author.
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A broken line define an area that it’s equal to the one bellow the derivative. Of course this
is not the only possible one.

In the next page the table of the Trapezoidal Gnomons n = 3,4,5,6



YA Trapezoidal 61 / 3
Gnomon Y=X
Roof n=3

48
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Several know sequence are hidden behind this new recursive formula to obtain the Trape-
zoidal Gnomons. The first interesting, for n = 3 is the sequence known as A032528: Con-
centric hexagonal numbers: floor(3 * n?/2).
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2528 Concentric hexagonal numbers: tloor( 3*n"2 /2 ).

0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541,
600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734,
1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456,
3601, 3750 (list; graph; refs; listen; history; text; internal format)

OFFSET 0,3

COMMENTS From Omar E. Pol, Aug 20 2011: (Start)

Also, cellular automaton on the hexagonal net. The sequence gives the
number of "ON" cells in the structure after n-th stage. A007310 gives
the first differences. For a definition without words see the
illustration of initial terms in the example section. Note that the
cells become intermittent. A083577 gives the primes of this sequences.

Also, A033581 and A003154 interleaved.

Also, row sums of an infinite square array T(n,k) in which column k lists
2*k-1 zeros followed by the numbers A008458 (see example). (End)

Sequence found by reading the line from 0, in the direction 0, 1,... and
the same line from 0, in the direction 0, 6,..., in the square spiral
whose vertices are the generalized pentagonal numbers A001318. Main axis
perpendicular to A045943 in the same spiral. - Omar E. Pol, Sep 08 2011

LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for sequences related to cellular automata
Index entries for linear recurrences with constant coefficients, signature

(2,0,-2,1) .
FORMULA Gafot (XHA*x024%x23) [(1-2%%42*x23-x00) = X (14+4*x+x22) [ ((14x) *¥(1-%) 23) =
a(n) = +2*a(n-1) -2*a(n-3) +l*a(n-4). - Joerg Arndt, Aug 22 2011
a(n) = (6*n~2+(-1)"n-1)/4. - Bruno Berselli, Aug 22 2011

a(n) = A184533(n), n >= 2. - Clark Kimberling, Apr 20 2012
First differences of A011934: a(n) = A011934(n) - A011934(n-1) for n>0. -
Franz Vrabec, Feb 17 2013

EXAMPLE From Omar E. Pol, Aug 20 2011: (Start)
Using the numbers A008458 we can write:
O Ty 65 12 1BLe 245 805 B6y 42, 48, bd;

o, 0, 0, 1, 6, 12, 18, 24, 30, 36, 42,
o, 0, o, 0, 0 1, 6, 12, 18, 24, 30,
o, 0, o0, 0o, 0 o0 o0 1, 6, 12, 18,
o, 0, o, 0, 0, 0, 0, 0, O, 1, 6,
And so on.

The sums of the columns give this sequence:
o, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150,

Tllustration of initial terms as concentric hexagons:

o
]
o
o]
o

cooo o o

000 o o o 000 o

oo 9 9 9 22 9 9 o (SR}
© 0o 00 o oo o o oo o o o o
oo o o o o000 o o o o o
000 <} o o 000 o

o O OO0 o (0]

1 6 13 24 37
(End)
MATHEMATICA fln , m ] := Sum[Floor[n~2/k], {k, 1, m}]; t = Table[f[n, 2], {n, 1, 90}]
(* Clark Kimberling, Apr 20 2012 *)
PROG (MAGMA) [Floor (3*n”~2/2): n in [0..50]]1; // Vincenzo Librandi, Aug 21 2011
(Haskell)

a032528 n = a032528 1list !! n
a032528 list = scanl (+) 0 a007310 1list
—- Reinhard Zumkeller, Jan 07 2012
(PARI) a(n)=3*n~2\2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS Cf. A003154, A007310, A008458, A033581, A083577, A000326, A001318,
A005449, A045943, A032527, A195041. Column 6 of A195040.

AULHOR N. J. A. Sloane.
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For n=4, is the sequence known as A007588: Stella Octangula numbers: a(n) = n * (2 *
n? —1).



A007588 Stella octangula numbers: a(n) = n*(2*n"2 - 1).
Formerly M4932)

0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, 5474, 6735, 8176,

9809, 11646, 13699, 15980, 18501, 21274, 24311, 27624, 31225, 35126, 39339, 43876,

48749, 53970, 59551, 65504, 71841, 78574, 85715, 93276, 101269, 109706, 118599, 127960

(list; graph; refs: listen; history; text; internal format)

OFFSET 0,3

COMMENTS Also as a(n)=(1/6)*(12*n~3-6*n), n>0: structured hexagonal anti-diamond
numbers (vertex structure 13) (Cf. A005915 = alternate vertex; A100188 =
structured anti-diamonds; A100145 for more on structured numbers). -
James A. Record (james.record(AT)gmail.com), Nov 07 2004

The only known square stella octangula number for n>1 is a(le9) =
169* (2*¥16972 - 1) = 9653449 = 310772. - Alexander Adamchuk, Jun 02 2008

Ljunggren proved that 9653449 = (13*239)"2 is the only square stella
octangula number for n>1. See A229384 and the Wikipedia link. - Jonathan
Sondow, Sep 30 2013

4*A007588 = A144138 (ChebyshevU[3,n]). - Vladimir Joseph Stephan Orlovsky,
Jun 30 2011

If A016813 is regarded as a regular triangle (with leading terms listed in
A001844), a(n) provides the row sums of this triangle: 1, 5+9=14,
13+417+21=51 and so on. - J. M. Bergot, Jul 05 2013

Shares its digital root, A267017, with n*(n”2 + 1)/2 ("sum of the next n

natural numbers" see A006003). - Peter M. Chema, Aug 28 2016
REFERENCES J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY,
1996, p. 51.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing
(2012), page 140.

W. Ljunggren, Zur Theorie der Gleichung x”2 + 1 = Dy”4, Avh. Norske Vid.
2Akad. 0slos T+ 1942 (5): 27,

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences,
Academic Press, 1995 (includes this sequence).

LINKS Alexander Adamchuk and Vincenzo Librandi, Table of n, a(n) for n =

0..10000 [Alexander Adamchuk computed terms 0 - 169, Jun 02, 2008;
Vincenzo Librandi computed the first 10000 terms, Aug 18 2011]

A. Bremner, R. Hgibakk, D. Lukkassen, Crossed ladders and Euler’s quartic,
Annales Mathematicae et Informaticae, 36 (2009) pp. 29-41. See p. 33.

T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq.
(1D

Eric Weisstein's World of Mathematics, Stella Octangula Number

Wikipedia, Stella octangula number

Index entries for linear recurrences with constant coefficients, signature

(4,-6,4,-1).
FORMULA G.f.: x*(L+10*x+x"2)/ (1-x)"4.
a(n) = n*A056220(n) .
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Harvey P. Dale, Sep
16 2011

From Ilya Gutkovskiy, Jul 02 2016: (Start)
E.g.f.: x*(1 + 6*x + 2*x"2)*exp (x) .
Dirichlet g.f.: 2*zeta(s-3) - zeta(s-1). (End)

a(n) = A004188(n) + A135503(n). - Miquel Cerda, Dec 25 2016
MAPLE A007588:=n->n* (2*n"2 - 1); seq(A007588(n), n=0..40); # Wesley Ivan Hurt,

Mar 10 2014

MATHEMATICA Table[ n(2n~2-1), {n, 0, 169} 1 (* Alexander Adamchuk, Jun 02 2008 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 14, 51}, 50] (* Harvey P. Dale,

PROG (PARI) a(n)=n*(2*n*2-1)
(MAGMA) [n*(2*n”2 - 1): n in [0..40]1; // Vincenzo Librandi, Aug 18 2011
CROSSREFS Backwards differences give star numbers A003154: A003154 (n)=A007588 (n)-
A007588 (n-1) .
1/12*t* (n~3-n)+ n for t = 2, 4, 6, ... gives A004006, A006527, A006003,

A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467,
A007588, A062025, A063521, A063522, A063523.
Cf. A001653 = Numbers n such that 2*n*2 - 1 is a square.

a(le9) = (A229384(3)*A229384(4)) 2.
cf. A267017, A006003.
AUTHOR N. J. A. Sloane
EXTENSIONS In the formula given in the 1995 Encyclopedia of Integer Sequences, the

second 2 should be an exponent.

+440
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Chapt.4. A simple algorithm for finding the n-th Root

To extract the n-th root of a number P we can make the inverse process, so a Recursive
Difference we can indicate with the Greek letter §.

Once we chose the n-th Complicate Modulus we are interested in, for example n = 3, so
M3, we can have 2 main cases:

1) The recursive difference will give us back an (also called: n-th Power Zero)
2) The recursive difference will give us back an Integer plus a

if P = A" here for example P = A® = 27 than starting from P if we remove the following
Gnomons M; = 32? — 3z + 1 starting from = = 1 we can make the n-th root (by hand) in
this simple way:

27 — (30 — 32+ 1)y =27 — 1 = 26

26 — (327 =374+ 1),m0 =26 — 7 =19

19— (32 =30 +1),3=19-19=0

So we can write 27 as: 27 =3M3 + 0

This is a very slow algorithm to extract any n-th root also by hand, so it has no interest
for computation; but it’s clear it can sieve each Integer (for now) Number P to have back
its Integer (or not) n-th root.

if P = A" here for example P = 28 then starting from P if we remove the followings
Gnomons M; = 3z? — 3z + 1 starting from z = 1 we can make the n-th root p (by hand) in
this simple way:

28 — (327 =31+ 1),my =28 — 1 =27

27 — (32 =320 4+ 1)pey = 27— 7= 20

20 — (32% —3x 4+ 1),—3=20—-19 =1

So we can write 28 as: 28 = 3M;3 + 1
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Each time we have a Rest we are sure that our integer P is not a Power of an integer.
As we will see in the next chapters we can say more in case we have a Rest

We can therefore use the right Complicate Modulus M,, for the n—th Root we desire and
symbol to indicate this Recursive Difference Process we will do, where P € N is any num-

ber and the Integer Upper Limit p is also our Integer Unknown Root (so the variable since
it’s the result we are looking for) :

So if:
P+l —(z—1" =0

Than P =p™;p € N, so Rest = 0. Vice versa if:

P+sH@r—@-1)") >0

Than P # p™;p € N, so we have a Rest = P — 5x@1(x” —(z—=1)")

As for Modular Algebra is possible to compare it to a One Hand clock, we have now all
the info to invent a new Two-Hand-Clock, much powerful than the old one. Going deeper
in this concept several new simple but interesting properties will be found (and I think
I've opened a new branch of math to young students not jet ready for Group theory / Ab-
stract Algebra.

I can imagine many of you will jump on the chair once, in a few pages, when I'll hack the
Sum Operator, but, again, you will see will be for a good reason.
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Chapt.5 The Two Hands Clock

Modular Algebra is based on the well known One-Hand-Clock and just let us know the
right hour for 1 second, two times each day.

Here I present my new Two-Hand-Clock, having a Digital Display that always show the
right hour, base the n-th Power n we decide:

ncfAMDIICQT mOanitr e rINry
COMPLICATE MODULUS" CLOCAH
Rest digital indicator
Rest clock hand

Turns digital

mnu ‘ }8 !:-‘ - indicator

_. Numbers of complete
------ \ turns clock hand

Reference lines.
Their number
change (rise)
after each
complete

B PPy g Totalizer

Power’s .~
Indicator

3
Example: X Power “watch” or “counter”

Stefano Maruelli

The Two-Hand-Clock show us more information than the classic single hand. It display
unambiguously any Integer P as a Complicate Number, as the previous definition I gave.
For the moment T present how it shows the Reduced Integer Complicate Numbers:

p=|P/"|"+(P—|PY"])"

The Two-Hand-Clock, for Integers has some special characteristics:

- A digital display that show the number P (I've called: Tote)

- 2 hands, for the moment we suppose moving not continuously, but jumping from a Refer-
ence Line to another:

- One short (Red) for the Hours, that show p the Integer Root of P
- One Long (blue) for the minutes, that here show the REST = R
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- A digital background able to shown the Reference Lines, that change each complete turns
of the short hand, and will be useful to fix the scale for ’analog showing’ the two informa-
tion: the Integer Root p and the Rest R.

The number of the divisions (Reference Lines) rise each turn. It’s the value of the Compli-
cate Modulus M, calculated for the current Actual Integer Root p + 1, value.

- A 2 digit display showing what n-th Power n we are using root; here in the previous pic-
ture, the Cubic one, so n = 3.

- To let more easy to read the position of the two hands, there are also over the clock two
Digital Numbers moving with the Hands:

- one Red showing the Integer Root p, and
- one Blue showing the value of the Rest R

Here again the picture:

“COMBLICATE MODULYS" I’IBEH‘

Rest digital indicator
Rest clock hand P T dieital
urns digita

‘*m_“ ‘ }8 E'l - indicatorb

_. Numbers of complete
turns clock hand

Reference lines.
Their number
change (rise)
after each
complete

B Py g Totalizer

Power’s .~
Indicator

3
Example: X Power “watch” or “counter”

Stefano Maruelli

You can find animated Gif, upgrade and other info at my web page:

http : | /shoppc.maruelli.com /primetudy.htm


$http://shoppc.maruelli.com/prime_study.htm$
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We can also tabulate the Integer P, the Integer Root and the Rest, to graphically show
what happen to this value.

N modulo M2 or N as Integer SquareRoot + Rest

:

12

[=-RES A= RV R R TR SR, -]

10

10
11:
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

— e rie 1

A / ( =
i ; Resto
2 /
T v T
5 10 15

T T T T T 1
20 25 30 35 40 45 50

[}
mma\a\mmmmmmmu’!mmmmmu!-n-h-b-h-haaaawwwwwwwmmmmmuuuH

TR WR R OS5 0D0 NN R WM OSSO EWNEOONE W RGOR BN R ONRO

Here an example of how the 2 hands clock show P € N in terms of an

IntegerSquareRoot and a Rest

Using the right Complicate Modulus M,, = (z"—(z—1)") it’s possible to show any P € N*
Base any n-th Power we decide.

Will be interesting to think to a more evolved version where the two arrows moves contin-
uously as the standard clock, since in this way we can also show any P € R.



Investigating in the Properties of the Rest

95

Is time now to better investigate in the Properties of the Rest since is a well known branch

of math.

The Sign in front of the Rest:

First of all T assume till here that the Rest is Positive, while is clear that it can be also

Negative, in fact we can also make another bijection:

P =pMy+ Rest, = (p+ 1)My + Rest_ = (p+ 1)My — |Rest_|

P

CO =~ O U0 I W M=

s s s W W W W W W W WWNRRNRNNRNNNNNRE PR R R e
b WM EO DRSO 0 - WS OWLEN =G0 WK OWDKE=OUWMH WNRO WO

IR (1/2) Rest

1

ro oy LU R AR RAE DR R EERWWWWWWWNNNNRNERERS

ro e~ YU AWM =2 O

L~ UsWNEFP,P OO AR WNEPOOUNRAREWONRER,OAWNREONEOO
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IR+1

NN N NSNS SNSNSSN OO OO se sl bR ERWLOLWWWRONNRN

Rest

P IR(1/3) Rest

1 1 0
P al ik
3 1 2
4 1 3
5 1. 4
6 1 5
7 1 6
8 2 0
9 7 1
10 2 2
11 74 3
12 2 4
13 2 5
14 2 6
15i 2 7
16 2 8
17 2 9
18 2 10
19 74 11
20 2 12
21 2 13
22 2 14
23 2 1H
24 2 16
25 ¥d 1
26 2 18
27 3 0
28 3 1
29 3 2
30 3 3
31 3 4
32 3 o9
33 3 6
34 3 L
35 3 8
36 3 9
37 3 10
38 £ alih
39 3 12
40 3 13
41 3 14
42 3 15
43 3 16
44 3 17
3 18

s
w

IR+1 Rest

2
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Reduced and Non Reduced Complicate Numbers

As told in the definitions what above presented suggest that, more in general, we can have
2 form of Complicate Numbers:

1- Reduced Form where the Rest is always bounded from 0 to Rest, 0 < M, ;.
2- Non Reduced Form where the Rest < P.

As you understood I usually talk of the first type of Complicate Numbers

Analyzing the Rest

We know the Rest is not sufficient to define exactly who our (reduced) Complicate Num-
ber is, but in the most simple case it can define a Lower Bound. vice versa in another case
we can be non able to do some evaluation, because for example we are working with Un-
known Variables, that are just written as A, B, C or any other letter, just. In that case
the complicate Modulus Algebra will give it best result allowing us to make some more
deep concerning on the nature of such Rest, for example analyzing a Function that pro-
duce such rest (if possible). I will let this case for the next Volume since it is necessary,
before enter in such type of Complicate Modulus Analysis, to know all the characteristic
and behavior of the Complicate Modulus Numbers.

1) When is possible to find a Lower Bound:

Looking to the previous picture we can see that the Rest can be bigger than the Integer
Root A.

If, for some reason, we have a Complicate Number (for a known power n) where the Rest
is bigger than the n-th Power p™ of the Integer Root p, than we Reduce it simply returning
it to be a classic Number P and then returning p to be:

p=|P]
and the Rest to be:
Rest =P — (|P])"=P—p"

There is another case when, for some reason, we know just the Rest of such Complicate
Number and we need to make an evaluation (for example in an inequality) of who can be
the Minimum Integer Root of our Complicate Number’s Rest.

With a simple concerning we can be sure that it cannot be a Number less than this value:

Calling ppin, the Minimum Integer Root (given by the Rest we are talking of), it can be
found considering that the Rest, for a Reduced Complicate Modulus Number, is always
packed between the Last Gnomon represent the unknown Number P for what it’s Root is:

p=|P]

and the Next One, so it is always:



M, , < Rest < My, pi1

Since:

My, =(@"—(@-1)")

(p" —(p—1)") < Rest < ((p+1)" = (p)")
So we have to solve the equation to have X = p,,ip :

(X" = (X —1)") — Rest=0
then we have to keep the Floor Value for X.
Here as example in the simplest case n = 2, so My, ... = 2Dmin — 1 50

Pmin = |(Rest +1)/2]

Examplel: Rest =40, n = 2

Pmin = [((40+1)/2)] =20

In fact the Last Gnomon is:

Mo =2%20—-1=239

And the Next one (is necessary to complete a Genuine Power of an Integer) is:
Mo =2%21 —1=41

So the Reduced Complicate Number having rest 39 can be just 20 since it is:
20My + 39 = 202 + 39 = 439
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1) When is NOT possible to find a Lower Bound:

Another case live the Mathematician at work with no results for several hun-
dred years is when the Number is an Unknown Result of a function, so for
example the result of the simple equation:

A3+ B =103
where we ask also that (A, B,C,n) € N*

So the question is: can be, for example, the Sum of two Cubic Powers, again
the Cube of an Integer 7

5% + 67 =077

So with our notation:

(5M; + 0) + (6Ms+) =?(TM; + 0)

This is Fermat Last Theorem, in the most simple non working case n = 3.
Fermat The Last Theorem ask the answer for any (A, B,C,n) € N*,

The reply was one of the most hard problems of number Theory and has to
wait several hundred years before Lord A. Whiles gives his final proof that
just in case n = 2 we will have possible integer solutions. And the answer
was given using Abstract Algebra and studying the behavior of some very so-
phisticated Modular curves (semi stable elliptic curves).

My Complicate Modulus Algebra was build to try find a most easy reply to
this ancient problem on what will we return on in the next Vol.2. I would left
away from such proof any abstract concept since humans (or, minimum, all
as access to the simple math of Sum and Integrals) can understand why Fer-
mat’s trick doesn’t works for n > 2. Lot must be investigated before we’ll
have in the hands all the weapons are necessary to rise our proof.
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26 = 2M, + 18 (=2’ +18)

all rights reserved by Stefano Maruelli

Here an example of how the 2 hands clock show P = 26 in terms of Integer Cubic Root (2)
and Rest (18) It’s possible to use it to show any P € N* base any n-th power.

Here the clock runs, finally showing the number 26 modulus Msj:

It switch on and makes the first turn displaying 1, than it make another complete turn
showings 8

But while running his 3th turn, it stops before concluding it:

The minutes hand stops onto the 18th division, as result of the recursive difference:
26 — (327 =37+ 1),=1 =26 —1 =25

25 — (322 —3x 4 1),—0 = 25— 7 =18 = REST

Since at the next turn we will have:

18 — (32 =3z + 1),m5 = 18 =19 = —1
So the clock stops at the previous 2nd turn, leaving us a REST=18
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"l'l'lﬁlDlll'l:‘Tl' monilr e r1nry
Luniroicnic nupuLuy LLULIT]
Example: Power Counter n=3
_ Rest
Rest=0 Rest =0 18 2
M3
D)o EvlY
START Myl =(@X3xs1)=1 Ml s (XEBXH)=7 Mgl = (3X23X+1)=19
1st turn = 13 2th turn = 2°= g 3th Uncomplete turn
=2%+18 =26

all rights reserved by Stefano Maruelli

How the clock runs to show: 26 Modulus M; or 26'/3

Following this example it’s possible to build-up all the n-th Clock we need to investigate if
our number P is, or not the genuine Power of an Integer, we are searching for.

Note: from n=3 if we make a movie while running following root extraction of rising num-
bers P, we will see the shortest hour hand show us bigger and bigger Integer Roots, but
due to the fact that the number of division of the clock rise each complete turn, it’s angu-
lar movement, after it rise the maximum angular position of 2, it moves backwards to zero
while P is rising. So the angular position of 3,4,5 etc... respect to the Zero, moves closer
and closer to zero (the old 0-12 hours position on a classic known clock).

All that is a presentation of the first simple application of my Complicate Modulus Alge-
bra. I spent 8 years of hard works to go deep enough in this simple trick, to let it becomes
useful, so to let it work also with Rational, some Irrationals till infinitesimal P.



The Two-Hand-Clock with n = 2
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Example: Power Counter n=2. P from 0 to 11

all rights reserved by Stefano Maruelli

START

all rights reserved by Stefano Maruell

all rights reserved by Stefano Maruell
all rights reserved by Stefano Maruell

M, yo= (2X-1)=3 My, x=p= (2X-1)=3

- 42 _
1Stturn=12 1thturn+1 =1+1=2

all rights reserved by Stefano Maruelli
all rights reserved by Stefano Maruelli
all rights reserved by Stefano Maruell
BN

Mz, x-2= (2X-1)2=3 M, yes= (2X-1)=5 My, yes= (2X-1)=5
Tthturn+2 =142=3  >ihturn+0 =1%0=4  2thturn+1 =2%1=5

all rights reserved by Stefano Maruelli
all rights reserved by Stefano Maruelli
all rights reserved by Stefano Marueli

3 2
My yoa= (2X-1)=5 My yos= (2X-1)=5 M, xq= (2X-1)=5
2thturn+2 =2°+2=6 2thturn+0 =2%3=7  2thturn+1 =2%4=8

all rights reserved by Stefano Maruell
all rights reserved by Stefano Maruelli
I -—
all rights reserved by Stefano Maruelli

My xos= (2X-1)=7 My yoy= (2X-1)=7 M, y=4= (2X-1)=7
thturn+0 =3%+0=9  3thturn+0 =3%#1=10 3thturn+2 =3%2=11

/

Figure 3: For n = 2 the movements of the two hands are clockwise and feel intuitive, while we will see it
will be not fromn = 3. The Hour’s Hand will arrive at the limit for P = oo at a 7 position (6 o’clock).



The Two-Hand-Clock with n =3
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Example: Power Counter n=3. P from 0 to 11

all rights reserved by Stefano Maruelli

My op= (3XC-3X+1)=1 My xep= (3X°-3X41)= Mj x-p (3X°-3X+1)=7
1st turn=13 1th turn + 1 =13+1=2

START

all ights reserved by Stefano Maruelli
all rights reserved by Stefano Maruelli

all rights reserved by Stefano Maruelli
[N}
=N

W M, o, =(3X°-3X+1)=7 4
3, x=2=(3X -3X+1)= My, s =(3X" 3x+1 My, g =(3X°-3X+1)=7

— 3 —
Tthturn+2 =1+2=3 44 tun+3 =1%3=4  1thturn+4 =1%4=5

o

2

all rights reserved by Stefano Maruelli
all rights reserved by Stefano Maruelli
all rights reserved by Stefano Maruell

My xos=(3X°-3X+1)=7 My xes=(3X"-3X+1)=7 M x4=(3X"-3X+1)=19
1thturn+2 =1°+5=6 2thturn +0 =1%6=7 2thturn+0 =2+0=8

My yea= (3X%3X+1)=19 My o= (3x2-33x+1 )=19 M, o= (3X°-3X+1)=19
Zhturn+1 =2°+1=9 2thturn+2 =2+2=10 2thturn+3 =2+3=11

all ights reserved by Stefano Maruelli
all rights reserved by Stefano Maruelli
all rights reserved by Stefano Maruelli
‘\

Figure 4: For n = 3, as you can see after reaching 7 the movements of the Rest’s Hand is clockwise and
feel intuitive while the movements of the Hour’s Hand (Integer Root) is clockwise just till 1 (and feel in-
tuitive), while when it rise 2" it start to moves counter clock wise since the number of divisions My rise
faster that the new angle the hand has to do.



Hour’s Hand Position in the case n =2, and n =3

P(x) H m M_H Y=ANGLE Px) H m M_H Y=ANGLE
1 10 i1 360.00 L 0 1 360.00
2 11 3 120.00 2 1 1 7 51.43
3 1 2 3 120.00 3 1 2 7 51.43
4 2 0 5 144.00 4 1 S 7 51.43
5| 21 5 144.00 5 1 4 7 51.43
6] 2| 2 5 144.00 6 1 5 7 51.43
7] 2| 3 5 144.00 7 1 6 7 51.43
8 2 4 5 144.00 8 2 0 19 37.89
9 3 0 7 154.29 9 2 1 19 37.89
10 3 1 7 154.29 0 2 2 19 37.89
11 3| 2 7 154.29 11| 2 3 19 37.89
12 3| 3 7 154.29 12 2 4 19 37.89
13 3 4 Z 154.29 13 2 5 19 37.89
14 3 5 7 154.29 14 2 6 19 37.89
15 3 6 7 154.29 15| 2 7 19 37.89
16 4 O 9 160.00 16 2 8 19 37.89
17 4 1 9 160.00 17| 2 9 19 37.89
18 4 2 9 160.00 18 2 10 19 37.89
19 4 3 9 160.00 19 2| 11 19 37.89
20 4 4 9 160.00 20 2 12 19 37.89
21 4 5 9 160.00 21 2 13 19 37.89
22 4 6 9 160.00 22 2 14 19 37.89
23 4 7 9 160.00 23 2 15 19 37.89
24 4 8 9 160.00 24 2 16 19 37.89
25 5 0 11 163.64 25| 2| 17 19 37.89
26/ 5 1 11 163.64 26 2 18 19 37.89
27] 5| 2 11 163.64 27 3 o 37 29.19
28 5 3 11 163.64 28 3 1 37 29.19
29 5 4 11 163.64 29 3 2 37 29.19
30 55 11 163.64 30 3 3 37 29.19
31 5 6 11 163.64 81 8 4 37 29.19
32 5/ 7 11 163.64 32| 3 5 37 29.19
3 5 8 11 163.64 3 3 6 37 29.19
34 5/ 9 1 163.64 34 3 7 37 29.19
35 510 11 163.64 35 3 8 37 29.19
3 6 0 13 166.15 36 3 9 37 29.19
37 6 1 13 166.15 37 3 10 37 29.19
38 6 2 13 166.15 38 3 11 37 29.19
39| 6 3| 13 166.15 39 3 12 37 29.19
40 6 4 13 166.15 4 3 13 37 29.19
41 6 5 13 166.15 41 3 14 37 29.19
42 6 6 13 166.15 42 3 15 37 29.19
43 6 7 13 166.15 43 3 16 37 29.19
4 6 8 13 166.15 44 3 17 37 29.19
45 6 9 13 166.15 45 3 18 37 29.19
46 6 10 13 166.15 46 3 19 37 29.19
47 611 13 166.15 47 3 20 37 29.19
48 612 13 166.15 48 3 21 37 29.19
49 7 0 15 168.00 49 3 22 37 29.19
50 7 1 15 168.00 50 3 23 37 29.19

y = 140.9x00383
R?*=0.7971

=

—n=2

SQUARE

—n=3

CUBE

I S —
y = 80.499x0276
R?=0.9554
o 50 100 150 200 250 300 350
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Figure 5: In the upper Blue graph the Position of the Hour’s Hand in the case n = 2: the angle rise con-
tinuously and has 180 as limit. While in the case n > 3 the angle decrease (and has 0 as limit) due to the
fastest increment of the number of the division for the Minute’s Hand that will show the Rest.

Angle formula in the case n = 2:

Hour (Integer Root) H = [(P)'/?]
minute (Rest) m = P — ([(P)/%])?
Number of Division at the current hour: Mg =2z —1=2%(H+1) -1

Angle = (360/Mpy) « H

Example: n=23; P=15
H=[(P)V?] = [(15)"2] =3

m=P —[(P)"?] =15~ ([(P)"*])* =6
My=2%x(H+1)—1=2x3+1)—1=7

Angle = (360/My) « H = (360/7) % 3 = 154.29...
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Angle formula in the case n = 3:

Use the previous changing n = 3 and remembering that the new formula for My is:
My=32>-3z+1=3x(H+1)?-3x(H+1)+1
Angle = (360/Mpy) « H = ...

Of course we can now investigate in a more sophisticated clock where the Hours Hand moves

continuously, so it means it always return, also alone, the exact value of the n-th root of
P.

Unfortunately this doesn’t help us to have an answer if A” + B™ = C™ has a solution for
C eN.
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A little Physics excursus:

I cannot resist to make a little Physics excursus, since

leaving the Square as Modulo, plus Rest this looks like the electron’s jump mode, if we
imagine that the Blue line is the actual orbit and the Red one the extra given energy. This
explain why we must continuous to give energy to see a new jump, but that if we not give
enough nothing change in the orbit.

N modulo M2 or N as Integer SquareRoot + Rest

P [ m2 [ Resto

1 - | 0

2 & 1

3 1 2

4 4 0 40

5 4 1

6 - 2

7 4 3

8 4 4 35 [

g 9 0

10 9 1

11 - 2

12 9 3 45

13 ) 4

14 9 5

15 3 6

16 16 0

17 16 1 3

18 16 2

19 16 3

20 16 4

21 16 5 20

22 16 6

23 16 7

24 16 8

25 25 0 15

26 25 1

27 25 2

28 25 3

29 25 4 10 4

30 25 5 /—) /\ ——Resto
31 25 6 /\ -
32 25 7

33 25 8 5 N /

34 25 9 e
35 25 10

36 36 0

37 36 1 i 4 i i i i i i i
B 25 2 5 10 15 20 25 30 35 a0 5 50
39 36 3

0 36 4

a1 36 : e

It’s like a sort of an internal spring reaction: till we don’t brake the spring it continuous
to suck energy and nothing happen, but once it brakes, we see the jump. Of course there
is nothing that brakes, what probably happen is that the electron such energy rising one
parameter actually I don’t know exactly how to call (twisting or else) that imply a jump
just when rise his maximum possible value.
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Nexus Number’s Formula

Once the Integer derivative concept was understood, it is clear we can apply it recursively
too, having the Second, the Third and the n-th derivative too.

The Nexus Numbers are know to be Numbers coming from a recursive difference. Here
again the remainder to the ones coming from Squares and Cubes:

Integers | Power(s) | the Nexus Number(s)
X Y=XA2 | Y'i=XA2_(#1)-XA2_1 Y'=Y'_(I+1)-Y'_I Y= YU_(1+1)-Y"I
1 1 1 1 1
2 4 3 2 1
3 9 5 2 0
4 16 7 2 0
5 25 9 2 0
6 36 11 2 0
7 49 13 2 0
8 64 15 2 0
9 81 17 2 0
10 100 19 2 0

Integers | Power(s) | the Nexus Number(s)
X Y=XA3 | Y_i=XA3_(I41)-XA3_1 Y'=Y'_(H1)-Y_I  Y'=Y"_(I41)-Y'_I Y''=Y'"_(1+1)-Y"I
1 1 1 1 1 1
2 8 7 6 5 4
3 27 19 12 6 1
4 64 37 18 6 0
5 125 61 24 6 0
6 216 91 30 6 0
7 343 127 36 6 0
8 512 169 42 6 0
9 729 217 48 6 0
10 1000 271 54 6 0

but will be now clear that they are also coming from an explicit general formula depends
on the Binomial coefficients too, so on the Tartaglia’s triangle:

Be the First Integer derivative equal to Y/ = M,, = (X" — (X —1)") then we can define the
second derivative of a parabolas of the type Y = a X™ as:

Y= YI(X =i+ 1) = V(X =)

that is quite boring to be calculated each time if one do not observe (and easily prove)
that the result is:

Y/ =Y/(X=i+1)-Y/(X=i)=(X"=2(X —1)"+ (X —2)")

and for so the 3rd Integer derivative will be:

Y/ =YX =i+ 1) = Y/(X = i) = (X" = 3(X — 1) +3(X — 2)" — (X — 3)")



where the Triangular Structure know under many names one of the most famous in Italy
is Tartaglia’s coefficients (for (X — 1)), emerges:

So we can apply such Derivative Concept to any Polynomial of the type: ¥ = az" +
and of course also think what the imposition of Y/ = 0 means in what I define
the Exact Calculus, will produce here an apparently non so much interesting result is the

bX" L.

1

1 7

10 45 120

10 5 1

153 20 15 o 1
21 35 35 21 7 1

I & 28 50 70
1 9 30 &4 126 126 84 30 9 1

=10 252 210

11 535 165 330 4062

56 28 & 1

abscissa of the second of two consecutive points having the same height.

But going ahead on my this paper I hope will rest clear in your mind that we can pro-

120 45 10 1
462 330 165 55 11 1
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duce more interesting result using the Exact Calculus in the proper way, as we did for the
known classic one.

o -1
1 1!
2 =il
3 =il
4 7
3 29
] 71
T 139
] 239
9 377
10 559
11 791
12 1079
13 1423
14 1247
15 2339

16
17
18
19

2911
35609
4319
5167

¥'_I= D/DX(Fx)

KAZ-SXA2HEX-1 | 3*XA2-(3+2%5)*X+{5+1+6)

12
2
-2
]

3
22
42
63
100
138
182
232
288
350
418
492
372
658
730
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Now keeping Known Calculus as example, we can search for the two Following Integer Or-
dinates having the same value, simply equating to zero the first (at this point) Integer deriva-
tive of an Integer coefficient polynomial:

Be: Y = X3 — 5X? 4+ 6X — 1 then the first integer derivative will be (applying the rule
Y'=a(X™ — (X — 1)") each term):
YV = (X~ (X =1 =5%(X*—(X—-1)})+6 = 3X° - 3X +1-5%(2X —1)+6 = 32> — 132 +12

Then equating Y’ = 0 we have:

322 — 132+ 12 =0;2; = 4/3; 29 = 3

Since we are talking of Integer Points just, we keep just X—3 then we know now that for
X = 2and X = 3 the function has the same Ordinate Y = —1, means we have Two
following points having the same Ordinate.
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Chapt.6 STEP SUM: forcing the Sum operator to work with a Scaled
Rational Index

a ™
Integration via INTEGER and RATIONAL Derivative
—y?2 —_y?2 —v2
Y A Y=X v A Y=X Y A Y=X
2 2 7]
o[ A Y'=2X o A Y’=2X ol A=9 §  voox
| 32= sz dx K=C0
X=0 > K=1 .
7 é/ K=1 3 3'=Y @x1) a |
A1 2% T 1 ] =Y (-1
3 3 =Z 2X-1) paa B 3 ;,z( Sall
EEL 3Ly (-1
1 y K=2 1 / vl 3 ;/2( 2 4) 1 /
© Stefano Maruelli 7/ l © Stefano Maruelli
0 w1y 21/2A >X 0 vl Z%ATJS‘EfanUMnmUU:)x \\ 0 D 2‘/2A=3 )x
X M2  M2,k=1/2 SUM X' M2,k=1/2 M2,k=1/2 SUM
1 2%11 1 1 X 1 05 2%0.5/2-1/4 0.25  0.25
2| 2%21 3 4 X=—— 2 1 2%1/2-1/4 0.75 1
3 2031 5 9 K 3 15 2%15/2-1/4 125 225
4 2 2*2/2-1/4 1.75 4
5 25 2%25/2-1/4 225 625
6 3 2*3/2-1/4 2.75 9
\ >

Since we need to prove what in the previous chapters I’ve called the "Infinite Descent”
trough the Convergent Series it’s time to hack the Sum Operator. And this will be the
MAIN POINT of All This WORK.

Is known it is possible to indicate bellow the Sum operator not just a rising Index 7 equal
to an integer, but also an Index ¢ selected by a Function that define just some Special Value
that has to be Summed. Most common is the choice of Prime Number only, or just Odd or
Even, etc... But always ¢ was considered to be an Integer mute variable just.

And this was a Big Mistake because lie us blind for several hundred years !

what is known is that the Step = 1 is the integer difference between two following Integers
having Indexr = i and 7 + 1 for example, so it is:

Step = (i+1) — (i) =1,

But it’s well known, for example, that is possible to Sum Odds just, or Primes just, or any
other value defined by a pre-defined Function it will select Integer Index values ¢ € N just.
So the value of the Step can be no longer equal to the Index is just an integer Number in-
dicate where the pointer is, from Lower to Upper Limit.
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Moreover it is possible, under conditions will follows, in the special case of Telescoping
Sums (only!), so for example in case of Parables, so in the case the result o the Sum is
Y = X". We will take for example the Sum:

A
A=) (2X —1);AeN*
X=1
I start with the most simple case: Step = Rational Step = 1/K with K € N*

Remembering we want to hold the same result A% just unsinge a more fine Step Sum, hav-
ing Step 1/K, now we can introduce a Scale Factor 1/K? and a factor K , so we divide all
the terms of our Sum by K? , but remembering that we want to left unchanged the result,
so for the known Sum’s Rules we have to multiply the Upper Limit by K so we have:

Pls see the Appendix.1 to see the collection of Known Sum properties to refresh some of
their properties, if necessary.

Now, pls be open mind and remember what is often done to solve some integral: we make
an exchange of variable, so we can call: z = X/K , so changing X with X = z x K, if we
respect the following conditions:

a) if and only if a = A/K so if K is a Factor of A, so perfectly divide the Upper Limit A
- the Upper Limit A/K becomes: (A/K)+ K = A (with K € Nt )

- the Lower Limit X = 1 becomes: x = 1/K (a Rational for now) so:

(A/K)«K

-y (% -m)

z=1/K

Now we can simplify to have our new Step Sum, that moves of a quantity depends on the
original Integer Index i = 1,2,3,4.... but of a new scaled value we call Step 1/K from
1/K to A that is now allowed to be A = P/K so A € Q7, so the Index x will be x =
1/K,2/K,3/K....A:

A 2x 1
2 _
=3 (F-5)
z=1/K
Where we start with: A € N but can be now also A € Q

From this picture it’s clear what happens: we are just scaling the abscissa (K=2 in that
case), so we divide in 2 Each Base of Each Gnomon and, as consequence, we have to mod-
ify each Height respecting the rule: Missing Area equal to the Exceeding one.
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4 A
Integration via INTEGER and RATIONAL Derivative
—v2 12 —y 2
Y A Y=X v A Y=X v A Y=X
2 2 Z_
glA Y’=2X gl A Ye=gX 9 A=9 Yi=2X
Y;=2X-1 Y, =2X-1 ) 4E Loy s
3= [2x dX K=00
X=0 y/ K=1 ,
2 - K=1 3 3'=7 @x-1) A AEEE
A/ =3 Emmy *t 4 B Ry S
3] 3 =Z (2X-1) o B 3 ?:—m( x-1)
2 3
1 4 ’~K—2 1 / /"/3=;/2(27X-%) 1 /
© Stofano Marel 7/ : | © Steano Vet
0 wlw 2 A )x 0 A Z%A@JstafanuMamnlh)x \ 0 vl v 2v A= )x
X M2 M2,k=1/2 SUM X ' M2,k=1/2 M2,k=1/2 SUM
1 211 1 1 X 1 05 2%0.5/2-1/4 025 0.25
2 2*21 3 4 X=—- 2 1 2%1/2-1/4 0.75 1
3 %31 5 9 K 3 1.5 2*1.5/2-1/4 125 225
4 2 2%2/2-1/4 1.75 4
5 2.5 2%¥2.5/2-1/4 2.25 6.25
6 3 2*3/2-1/4 2.75 9
' >

I repeat it’s intuitive for n = 2 since the Linear derivative y = 2z helps us to see that for
each Gnomon one Red Square (1/2 % 1/2) has to jump right-up on the new, next, Gnomon
we created (so from Red it becomes Green).

In this way we preserve the linear Rule of the derivative and of the Integer derivative, that
the following Gnomon has to have an height that is 2 Units bigger than the previous one.

And we show also, that regardless which Unit we take: 1/2 as shown here, 1/10 or 1/10™
or in general 1/K™ with K, m € N for the moment, we always perfectly square the deriva-
tive y = 2z till a rational A = P/K™

All this works also if we take as example the case n—=3, in fact the term:

M, =[X" — (X —1)"] becomes: M = (3X? —3X + 1)

A
A= " (3X*-3X +1)
X=1
Again now we can divide all the terms of our Sum by K? , remembering that if we want to
left unchanged the result, we have to multiply the Upper limit by K so we have:

A3 SR /3Xx2 3x 1
3 _ 3 _
A= 1mx K —E:(—;@——;@+—m>

X=1

Now we can call: + = X/K | so changing X with X = x % K, if we respect the following
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conditions:
a) if and only if K is a Factor of A, or perfectly divide A
- the Upper limit becomes: (A/K)+ K = A (with K; A€ N*)

- the Lower Limit X = 1 becomes x = 1/K so:
A
(zxK)? (rxK 1
3 _
A* = Z ( K3 K3 +ﬁ

z=1/K

Now we can simplify to have our new Step Sum, that moves Step 1/K from 1/K to A =
P/K, so the new Index z will be z = 1/K,2/K,3/K....A:

A

3z 3z 1
3 _
A= (—K——W+—;@)

z=1/K

What is interesting is that K can be any Integer, but not just, as we will see in the next
chapters.

Talking for the moment of Integer K is for so clear that it can be, for example, equal to :
K=k

And this property will be of interest when I will show that we can also play with Rational
value k = 1/p.
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Example of a Step Sum step 1/10, for a Cube

A=3 k=10 A3 =27
X M3/k=3x"2/k-3x/k"2+1/k"3  SUM
0.1 0.001 0.001
0.2 0.007 0.008
0.3 0.019 0.027
0.4 0.037 0.064
0.5 0.061 0.125
0.6 0.091 0.216
0.7 0.127 0.343
0.8 0.169 0.512
0.9 0.217 0.729
1 0.271 1
11 0.331 1331
12 0.397 1.728
13 0.469 2.197
1.4 0.547 2.744
15 0.631 3.375
16 0.721 4.096
17 0.817 4.913
1.8 0.919 5.832
19 1.027 6.859
2 1141 8
2.1 1.261 9.261
2.2 1.387 10.648
23 1519 12.167
24 1.657 13.824
25 1.801 15.625
26 1.951 17.576
2.7 2.107 19.683
2.8 2.269 21.952
2.9 2.437 24.389
3 2.611 27|

In this Tab. the Cube of 3 calculated with a Step Sum, Step 1/10. From x = 1/10 to 3 we
Sum 30 Gnomons Ms x calculate for each .

In the Appendix 2, you'll find also some interesting example of what happen to a Sum of
such non conventional Terms when another function is applied to filter just few desired
Rational.

Note: I know this new use of the Sums will be hard to be digested, but it will be more
clear that it is not in conflict with the old notation and will let us show many interesting
uses of this Step Sum that is now able to raise an Upper Rational limit A = P/K.
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The General RATIONAL Complicate Modulus (or Gnomon’s height function) M,k for all
n — th power of Rational A = P/K becomes:

Mo — n\ z" ! n\ "2 n n\ z" 3 . 1
wET\1) K 2) K " \3) K% 7 Kn
So we have now a more useful instrument able to work with Rational, since I hope it’s
clear we can now stop to 0,5 or 2,7 or any other rational has 1 decimal digit only. If you

need more digits, just rise K, if you need infinite just keep the right K divide the upper
Rational limit P/K has infinite number of digits.

=y3 : - )
POWER Y=X" and Complicatemodulus step K=10
3x*2/10-3x/100+1/1000 sum=x"3 |
01 0001 0,001 / 3
: wl o= DERIVATE X
0.4 0,037 0,064
= o=l o .
b mE— y= 93X 23
ki oan| 1 /
1,1 0,331 1,331
1,2 0,397 1,728
1,3 0,469 2,197 7
1,4 0,547 2,744 J
15 0,631 3,375 / i \
1,6 0,721 4,096 y
1,7 0,817 4,913
1,8 0,919 5,832
19 1,027 6,859 '
. z,i 1;21 9,252 3
22 Lam_10en i— AREA OF GNOMONS =23 "1
24 L6 tsa here the base is not 1 =
26 1951 17,576 7 but 0.1! j_’i
2,7 2,107 19,683 2 =
28 2,269 21,952 v r_l_
28 2,437 24,389 —
3 2,611 27 ’__l._’
» —
—
2 =
© Stef M Ii
efano aruelll EPT '—,_J_l_
: = GNOMONS ROOF
— 4 - 2
T : : M3/o=3x710 -3x/100+1/1000
o J

How to make the Cube of 2 with a Step Sum Step 0.1:

23 = 8 is equal to the sum of the Red Columns
Base = 0.1
and the height will be M3/

M3 = 322/10 — 32/100 + 1/1000

As we did for the Integers, we can now call the yo = M, i function: the Rational deriva-
tive that works for any = € Q).

And to avoid any doubt I’'m wrongly abusing of this notation, in the next chapter I'll show
how to transform those two non continuous functions, into the well known continuous func-
tions we call derivative / Integral.
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Step Sum with Step S > 1:

I’ll remember also how it’s possible to manipulate the Sum without changing it’s result in
this way:

LEMMA 1: Step SUM with Step S>1

The condition to represent a Power of an Integer via Step Sum, where the in-
dex jumps Step S > 1 is:

Choose a Step S that perfectly divides the Upper limit A
So it’s possible to write A™ using a Step Sum, Step: "S"= factor of A with § > 1.

Example: we know how to write a square A?

to hold the same result making for example just one step S, we need just to divide the
number of Index, here is A, by A and multiply the Sum, or all the sum’s terms by A:

A A

A=>"2r-1)=) (2zA-A?)

=1 z=A

If A = m %7 (where m; and 7y two primes, or simply two factors of A) we can also write
the Step Sum Step m; (or 7o) doing the same trick we did for the Rational Step Sum, this
time Scaling UP that variables:

Again with an exchange of variable this time: X = x % m;
the Lower Limit X = 1 becomes : X = 1%xm = m

the Upper Limit X = A becomes : X = Axm/m = A
so the Sum becomes:

A A
=g = 3 0K =X e 1o

=1 X=m
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Here an example of a Step Sum, for Cubes are multiples of 3, Step 3:

X M_{3 *3} SUM

9 21 27
6 189 216
9 313 729
12 8399 1728
15 1647 3370
18 2457 5832
21 3429 9261
24 4563 13824
27 5839 19683
30 7317 27000
33 8937 20937
36 10719 46656
39 12663 J8319
42 14769 74088
45 17037 91125
48 19467 110392
o1 22039 132651
24 24813 157464
ol 27729 185193
60 30807 216000
63 34047 250047
66 37449 287496

69 41013 328509

Where:

A A
Bxa)’ =) (32> =3z+1) =) (3X?%3—3X x3> 4 1x3%)
r=1 X=3

The minimum number of Step we can make is 1, keeping the variable equal to the Integer
Root, but we can keep as Step > 1 any Integer factor of A, of one of their combinations.

From here we can immediately see that we are turning around the concept of factorization
one can start to investigate.



Here an example of how many way we have to represent the Cube: 122 with a Step Sum
having a Step>=1:

Table 4: How many way we have to represent the Cube: 123

Cube of 12 using STEP SUM, Step>=—1
x | X=1*x 3X2 % (1) — 3X * (12) + 1% (1%) SUM | SUM®/3)
1 1 1 1 1
2 2 7 8 2
3 3 19 27 3
4 4 37 64 4
5 5 61 125 5
6 6 91 216 6
7 7 127 343 7
8 8 169 512 8
9 9 217 729 9
10 10 271 | 1000 10
11 11 331 | 1331 11
12 12 397 | 1728 12
x | X=2x 3X2 % (2) —3X % (22) + 1 (2%) SUM | SUM®/3)
1 2 8 8 2
2 4 56 64 4
3 6 152 216 6
4 8 296 512 8
5 10 488 | 1000 10
6 12 728 | 1728 12
x | X=3x 3X72 % (3) —3X *(3%) + 1% (3%) SUM | SUM1/3)
1 3 27 27 3
2 6 189 216 6
3 9 513 729 9
4 12 999 | 1728 12
x | X=4x 3X2 % (4) — 3X * (42) + 1% (4%) SUM | SUM®/3)
1 4 64 64 4
2 8 448 512 8
3 12 1216 | 1728 12
x | X=6x 3X2 % (6) — 3X * (62) + 1% (6%) SUM | SUM®/3)
1 6 216 216 6
2 12 1512 | 1728 12
x | X=12x 3X72 % (12) — 3X  (122) + 1% (12%) SUM | SUM1/3)
1 12 1728 | 1728 12
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The most General RATIONAL Complicate Modulus M,/ :

Is well know we can Share an External (Integer for now) Factor into the Sum, so under

certain conditions we can put it into the Step Sum, with an exchange of variable, in the
same way. Then combining this Known Rule and the Exchange of variable previous one,
we can Introduce into out Step Sum any Rational External Factor, adjusting Limits and
Terms as will follow.

From the well known rule:

A
PxA*=) " (2PX — P);(P,A) e N*
X=1
We call P the External Factor and we start to consider the Special Case when P = A so
the External Factor is Equal to our Upper Limit, or equal to a Factor of the Upper Limit.
In such case (If and only if !) we can make the Exchange of variable x= X*A:

A A?
Ax A2 =) " (2AX — A) =) (2z - A)
X=1 z=A

at the condition that the Sum moves Step =A, but also due to the fact that Both Index
and Terms, both behave linearly

For higher powers, f.ex. n = 3 the tricks works in the same way so there is a distribution
of the External Factor into any term of the Sum:

A
Ax AP =" (BAX? — BAX + A)

X=1

But it is clear that we can NO LONGER make the exchange of variable v = X % A due to
the presence of higher degree terms (from X2 on, for the higher power develop), and this
still in the special case P = A.

To let the trick of the Exchange of Variable be possible we have to remember we can play
with Irrational factors too, so looking to it as Cube (also in the case it is the Cube of an
Irrational value too) we can properly share it into the Sum in this way:

A
(A1/3)3 x A3 — Z (3(A1/3)3X2 . 3(A1/3)3X + A)

X=1

and now putting: = AY? x X we can correctly operate the exchange of variable:

AxAL/3
(A3 5 A% = N~ (32” % (A'?) — 3u(A*%) + A)
z=A1/3
This at the condition we move of the Irrational Step equal to (A'?).

Of course nothing change if instead of A we have any integer p, so most in general we can
write:



81

AxpPl/3
(P35 AP = Y™ (327 (P'V?) — 3x(P*?) — P/3)
z=P1/3
So the sharing of the External Factor into the Step Sum looks exactly as the sharing of

the divisor K we have seen in the previous chapter, so we are now ready to consider also a
Rational External Factor p/K where p = P'/3 . Here an example of the result for n = 3:

P13 3 A*(%)m P13 P\ 2/3 P 3/3
- 3 — 2 - J— - — -
(@) o= 3 (@) @) - @)
—(f)"
So the most General RATTONAL Complicate Modulus (or Gnomon’s height function) Mn%
for all n — th power of Rational A = % is:
A*(g)l/"
P/KxA"= " M, r;(P,Q K A) eN*
()"

where:

T o N N (3 R N S o)

In this way we can rise, for example any integer with the desired adjusted General RA-
TIONAL Complicate Modulus.

X

For example we can rise the number 341 = 53 4 63 showing it is not equal to the closest
Cube 343, taking as example A—5, B—=6 C—=7 is a quasi solution of A% + B3 = C3:

Table 5: How to rise 341 Using a Cubic Irrational Modulus
X oz =X %(341/343) 3a?  (341/343)'/3 — 3u * (341/343)/3 4 341/343

Sum
1 0,998052575 0,994169096 0,994169096
2 1,996105151 6,959183673 7,95335277
3 2,994157726 18,88921283 26,8425656
4 3,992210302 36,78425656 63,62682216
5 4,990262877 60,64431487 124,271137
6 5,988315452 90,46938776 214,7405248
7 6,986368028 126,2594752 341
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Rule 11: Scaling the Sum. Index Vs. Terms Scaling / Shifting Rules

We see now the Last Set of Rules will help us to work with any problem involves Powers
and Equalities:

A) - how to Scale (Up or down) the Upper Limit LEAVING THE RESULT UNCHANGED,
so Rising/Lowering the Internal Terms of the SUM (JUST).

And, what happen trying to apply two modifications so:

B) - how to Scale (Up or down) the Upper Limit AND shifting the Lower one, LEAVING
THE RESULT UNCHANGED, so Rising/Lowering the Internal Terms of the SUM (JUST),
that is what Fermat state in his equation.

So in other terms for the Scaling Rule A:

A1) Is it possible, and under which conditions, to: Lower the UPPER LIMIT
from A to a < A, just, leaving the result unchanged RISING the VALUE of the
INTERNAL TERM/s ?

The answer is of course YES, with a trivial solution, if we introduce the Scaling Factor
p=(Ala):
A a=A/p A\ a a
S 3 (5) M=o =M,
1 1 1 1
A2) Or, vice versa, is it possible, and under which conditions, to: Rise the LOWER

LIMIT, for example from 1 to LL > 1, just LOWERING the VALUE of the IN-
TERNAL TERM/s ?

The answer, for both case, is of course YES, with a trivial solution, if we introduce the
Scaling Factor p = (A/a) :

a A=axp A a
a " n n
S Ma= 30 (5) Ma= (/0 M = (1) Y M,

1 1 1 1
As we can see the Lowering Factor p = (A/a) is of the same degree of the n-th Power we
are working on, and is applied on all the terms of the Sum. The Factor can be, clearly,
taken out from the Sum using the well known Sum’s Rule. This will be clear in what fol-
lows once we introduce the exchange of Variable x = X/K where I hope it’s clear K = p



83

New Rule for scaling the Upper Limit of a Step Sum:

Since we can go Rational we can now make an operation will be useful, and it will be in
the FLT proof: if we need to pass the Upper Limit of a Sum from A to B (with A and B
integers ), leaving the result of the Sum unchanged. From what we already know for going
Rational so writing A3 step 1/K, and scaling the Upper Limit from A to B we have:

A A B
32 3z 1 3Ax?  3xA% A3
3 _ 2 : 2 _ _ § :
1 z=1/K z=A/B

As we can see the Scaling of the limit needs the scaling of EACH term, to left the result of
the Sum unchanged.

The proof is very simple once we put p = B/A we have (remembering M,, = (X" — (X —
")

B B

A ="My =p"> My =(B/APY Ms=Y (B/AP(BX*—3X +1) (1b)

1 1

then we take p® into the Sum and we apply the exchange of variable X = p * x with p =
K = B/A to have:

=Ax B=AxZ

A3:Bip ANT (322 3o 1Y ZA 34w« BJA)?  34%(x« BJA) A (1)
~\B) \K KK . B B B
‘ i

that cancel out the B/A factors where possible becomes:

322 3w R Z. 342 3rA S
K K2 K3~ B B B
z=1/K z=A/B

A
A= "3X7-3X +1= (1d)
1

And now an anticipation of the Vol.2: the reason of all this long work: Fermat ask himself
if it is possible to perform a similar scaling, but working on the index dependent terms,
only. F.ex for n = 3:

4032 3, 1
—_ — + — =" X+B?-3(X+B 1 2
I;/KK =T XZ__I(?% +B)’ = 3(X + B) +1) (2)

So the right scaling of a right hand is a Genuine Cube of A, so for the real equality be-
comes scaling the Upper Limit from (C-B) to A, (but has to holds the same internal terms
') taking K = (C' — B)/A that is for so:

A A

32?2 3z 1 Z 3(C —B)2*> 3(C—B)’r N (C — B)?

ST 0T 1 3
A E A 1 A3 (3)
z=1/K z=(C-B)/A
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While Fermat is asking this one :

A

30° 3¢ 1 R 3@+B)? 3@+B) 1
+ﬁ—-z -

ot — 4
K K2 K K? * K3 (4)
z=1/K z=1/K

So if Fermat’s Right hand of the (5) is right, so equal to A3, it must be equal to the Right
hand of the (3), while it is very different (and of course wrong):

A A

322 3r 1 3(C = B)(zx+ B)? 3(C—-B)?*x+B) (C-B)>?

- 4 =7 —

K K2 + K3 Z A A2 + A3 (5)
z=1/K z=(C—-B)/A

The proof will show that this is impossible in the Rational since it is necessary to go to
the limit for K — oo so with an integral to have the equality. So this means we have to
rise to an Irrational limit (so one of the A B, or C has to be an Irrational).
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Here the table where you can see in numbers what happens:

- in the left Table we rise an Integer Upper Limit is A = 5 with a Step Sum with a generic
rational step here is 1/K = 1/5. The result is always A? since for Integers this sum is K
invariant.

- While on the right top we see how to rise the same A3 value, but with a rational Sum
from 1 to 6, so having 6 step. The Rule for this scaling is the one in the previous page.

- in the last one (5), viceversa we will see what happens into the right hand of a Fermat
Equation A% = C3 — B3 once cutted and shifted to the origin in the quasi triplet case A=5,
B—=6, C=T7: applying the right scaling Rule for the Upper Limit, so as we did for A to B,
but from (C' — B) to A we see we cannot rise the genine power of an integer is 125, since
we clearly have, compared with the (3), same limits, but bigger Terms.

The aim here is just to show an example of this Rules, for the Proof you've to wait my
Vol.2 since it comes applying a limit and you probably need to learn what follows, so the
Maruelli’s Integral via limit of this Step Sum. It looks like, but is not the same of Rie-
mann one.

FLT-N3-LEFT-HAND as GENUINE CUBE of A via STEP SUM K=A Maruelli-FLT-N3-LEFT-HAND as SHIFTED a GeNUINE CUBE of A
A=5 Right Modulus for CUBES GENUINE CUBE of x B=6 A=5 GENUINE "CUBE of A", WITH B=6 AS NEW UPPER LIMIT
X X=X/A 3xA2/A-3x/AN2+1/AN3 SuM X X=A*X/B 3AxA2/B-3AN2*x/BA2+AN3/BA3 suMm

i 0.2 0.008 0.008] 1 0.83333333 0.578703704 0.5787037
2 0.4 0.056 0.064] 2 1.66666667 4.050925926 4.62962963
3 0.6 0.152 0.216] 3 2.5 10.99537037 15.625
4 0.8 0.296 0.512 4 3.33333333 21.41203704 37.037037
5 at 0.488 1] 5 4.16666667 35.30092593 72.337963
6 1.2 0.728 1.728 6 5 52.66203704 125
75 1.4 1.016 2.744
8 1.6 1.352 4.096 Right Hand A=5 B=5 C=7 "quasi triplet" example (classic Sum)
9 1.8 1.736 5.832 =5 C-B=1 NON GENUINE "CUBE of A", FOLLOWING FLT REQUEST

10 2 2.168 8 X 3(X+B)A2-3(X+B)+1 SuMm

11 2.2 2.648 10.648 1 127 127

12 2.4 3.176 13.824

13 2.6 3.752 17.576

14 2.8 4.376 21.952 Right Hand A=5 B=5 C=7 "quasi triplet" example (Step Sum)

15 3 5.048 27 =5 C-B=1 NON GENUINE "CUBE of A", Rational Step K=(A/(C-B))

16 3.2 5.768 32.768 X X=X*(C-B)/A  3(C-B)(x+B)"2/A-3(C-B)A2*(x+B)/AN2+(C-B)A3/AN3 sum

17 3.4 6.536 39.304, 1 0.2 22.328 22.328

18 3.6 7.352 46.656 2, 0.4 23.816 46.144

19 3.8 8.216 54.872 3 0.6 25.352 71.496

20 4 9.128 64 4 0.8 26.936 98.432

21 4.2 10.088 74.088 5 1 28.568 127

22 4.4 11.096 85.184, © Stefano Maruelli

23 4.6 12.152 97.336

24 4.8 13.256 110.592

25 5 14.408 125
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Chapt.7: From Step Sum to the Integral:

We enter now in the most interesting part of the Rational Calculus, what is known as the
Finite Difference Analysis, passing from the Sum, to the Step Sum, to the Limit, showing
that the Telescoping Sum property lead to the Integral, but in an interesting way:

we have no more, as in the Classic Riemann Integral an approximation of via via more

close Areas, approximation, since talking of derivative of Parabolas we know we have an
invariant: so don’t care if we square the derivative with our Gnomons, or rational Gnomons,
or via Integral: we always get the same value (under few simple conditions).

I’ll aslo show that in a very similar way we can Bound some Irrationals between a Lower
and an Upper Integer and then Rational Limits that becomes our Irrational Value just
once we push the divisor K — oo.

From Step Sum to the Integral:

If we keep for example the Complicate Rational Modulus for Cubes: M; x = % — % + %

and we fix, for example (since it is true for any K € N* : K = 10™ then pushing m — oo
we have back the well know integral, as shown in this picture:

4 N\

From Integer and Rational Derivative to the known Derivative

Derivative Y’ equal to

Derivative Y’ vs. Derivative Y’ vs. Derivative Y’ vs. Rational Derivative Y
Integrer Derivative Y’ Rational Derivative Y1 Rational Derivative Y’ =
S K= 00 Step=d
K=1  Step=1 K=2  Step=1/2 rising K Step=1/K = poeX

Y i

i 2

[]|y? =3X-3X +1_
ATk K K

74
Yo=K atcY

3

© Stefano Maruelli

H ‘@Slei no Maruelli

The telescoping Sum Properties assure us that Power’s of Integers, so all the derivative of
Y = X", can be perfectly squared with columns of any BASE from 1, but as seen due to
the fact that we can scale any picture as we want, we can also think to increase the number
of Gnomons keeping a littlest base 1/ K instead of 1 (or more under certain conditions),
but we can also push K — oo to move Step dx, so having back an integral.
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Starting from A € N we can write A" as a Sum, or as a Step Sum or, at the Limit as
Integral remembering the exchange of variable x = X/K in each X dependent Term (in
this way we cut by K™ the Sum of the terms), and in the Lower Limit (and in this way we
multiply by K the number of index, what I call the Step balancing the reduction of the
Terms, as shown in the first chapters), having:

A A A A
A" = § M, = § jMnK:Iym § jMnK_/ nz " Vdz
—00
X=1 —1 peL 0
K K

Example for n = 3, putting x = X/K:

4 /322 3z 1
poyavoaxin- 3 (%o k)

X=1 z=1/k
Or:
A
32 3z 1 A
3 1 orT 0T L) L 27 _ 43
A—[}l_rfloo _zl/:K(K K2+K3) /OSxd:p A

It’s easy to prove this Limit with the classic technique, but also note that we have a proof
of the Transcendental Law of Homogeneity for K — oo that, in this case: 3z/K? and
1/K? are vanishing quantities (are infinitesimal of bigger order) respect to the First Term
322 /K since it depends just on f(x)/K, that is our non vanishing quantity dx

Just to remember how Numbers are organized:

1/2 2/2 3/2 4/2
1/3 2/3 3/3 4/3 5/3 6/3
1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4
"o . 5

(C) Stefano Maruelli dx
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We can therefore state out what was one of my first Theorem here (discovered several years
before the previous Rule):

If we are working with a power of an Integer, only, the result of the Sum / Step
Sum is independent from the K we choose:

If A € N* than we can write A" as:

A A A A
n __ o R _ 2
A" = E M, = E M, k = [}1_r>r(1>o E M, k= /0 3x“dx
r=1 z=1/K z=1/K

Remembering that:
n :L.n—l n l,n—Q n xn—3 1
My i = —(M)E- S
o (1) K (2) Kz (3) et T

If Ae : A= P/K than we can write A" just as:

A A A
n __ . _ 2
Ar= Y M, = lim > MH,K_/O 3a2dx

z=1/K z=1/K

If A € R with A= Irrational, than we can, in general, write A" as:

A A
A" = lim Z Mn’K:/ 3x2dzx

K—o0 0
z=1/K

But now the interesting concerning: if the Irrationality of A depends on a known factor,
for example A = /2 * a where a = r/s € (Q),

than is possible to hack again the Step Sum, fixing an Irrational Step S = 1/K x V2 to let
the Step Sum works with a Finite Number of Irrational Steps.

I know this left some non expert reader a little stuck, but after few minutes of check you
will se it works and this will be very useful once we will look into Fermat’s Last Theorem
and Beal conjecture.
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Proof in the most simple case n = 2:

Given: a,k € N* we can write:

Proof:

r=1

1 1 oz _ 2 [°
= o {(oh)(0k) . — gk} = 0 () =a* = [ 20

S0 () $)-

For n > 2 it follows in the same way (just with more vanishing Terms). But to understand
the fact that there is continuity between the Integer Sum and the Integral, also the Old
Mathematician has to digest that:

- The Mute Property of the Index was a False Math Mito, if taken in the sense that it has
nothing to tell to us, in fact,

as shown, we can make a change of variable calling + = X/K so we have a K times scaled
variable and to Left unchanged the result we can write:

A2—Af 20 1 _ ZA: 2 1\ _
N K2 K2?2) K K2)

x=1 z=1/K
A A
. 2z 1
= dim _ZK(?_E) —/0 2w dv

The proof it’s immediately given once will be clear that :

- For the Lower Limit, the first 1/K step when K — oo becomes 1/K =0

- 1/K? it’s an infinitesimal of Bigger Order respect to 1/K, than it vanishes.

- The first term divisor 1/K becomes in the standard notation: 1/K = dx for K — oo

Note: Is very important to remember that the Integral of the Rational derivative, once it
is considered as a Continuous Curve always satisfy this property:

A A
/ M, , dv < / nX"dx
0 0

In fact is clear that, for example for n = 3:
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A A
/ (32% — 3x + 1)dz < / 3r’dw
0 0

And will be also important for what I'll show in the next chapters to note that in case we
take as Complicate Modulus:

My i1 = (X +1)" — X™) we have (Except for A=1)

A A
/ M, 441 dx > / nX"dx
0 0

A A
/ (32 + 31 — 1)dz > / 3r?dw
0 0

for example for n = 3:

And. of course this will holds true also if we go Rational:

A A
/ M, ko dz < / nX"dx
0 0

In fact is clear that, for example for n = 3, for any K € Q™

A 2 A
3x 3x 1 9
/0 (7—ﬁ+ﬁ>dl’</o 3z dx

And in case we take as Rational Complicate Modulus the next step M, k.41 we have (Ex-
cept for A=1) for example for n = 3:

A A
/ M, kg1 dz > / nX"dx
0 0

A 2 A
3x 3x 1 9
/0 (7+ﬁ—ﬁ>df>/o 3x“dx

The concept of Bound will become very useful more ahead in this work once we will work
on Fermat the Last Theorem and on the Irrational numbers. Will be shown in the next
pages how the approach to the Limit behave rising 1/K:

Differently from how the Riemann Sum smoothly approach the Riemann Integral, here

we will see that the approach to the Limit is convergent (in media) but defined by a non
smooth function. For us is enough to prove it is convergent in Media and that both the
Best Approximated Points of the Lower and of the Upper Bound are converging too. So
this convergence is not as intuitive as the Riemann one is. In the next chapters a complete
explanation of this last concerning.
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Chapt.8: Extraction of the Rational n-th root, with a fixed number
of digit precision

We saw in Chapt.3 that is possible to make the n-th root of an Integer using the Recursive
Difference o method.

After showing how the Step Sum works, so how to rise a Power of a Rational using a Step
Sum, Step 1/K, I'll show now how to make the Rational n-th Root p of a Rational P € Q.
I start keeping P € N since at the end of the first example will be clear how to go over in

the Rational too.

We know that regardless if A =Q/K € Q or A € N we can write, for example for n = 3:

A
3
A § (_ - — + _3)

z=1/K

So is clear that if we have a number P = 31, of what we want to know, for example, the
cubic root with 1 digit approximation, we have to repeat backward the step we made to
have it’s cube keeping K = 10 and the Complicate Modulus M;3. More in general to have
m digits we have to choose K = 10™, since we are working with Decimal Base Numbers.

In the next table I've plotted:

x = Rational Root ; M3 jc—10 = (32?/10 — 32/10* + 1/10%) ; Partial Sum ; Difference: 31 -
Partial Sum

In case P is not a Perfect Cube, we have at the end of the recursive Difference a Rest that
is littlest than the next Rational (K=10) Rational Cubic Gnomon so Mso calculated at
x =p+ 1 (where I remember p is always in our notation the Integer Cubic Root of P).

If rising K it’s possible to arrive at Rest = 0 then P has a Rational root, vice versa, as |
said in Chapt.3, this case will be divided in two:

1- it has an infinite, Periodic, number of Decimal Digits so it’s a Rational, or
2- it has an infinite, Non Periodic, number of Decimal Digits so it’s an Irrational.

In the case of 31 we have the suspect it has an Irrational Root since rising K, the Rest be-
comes smaller and smaller, but we need to push K to the limit K — oo to see the Rest
vanishing, and we can’t recognize a Period in that number.

Using this Algorithm we can therefore prove whether a number P has or not an Integer
Root (so is, or not a Perfect h-th Power), and since this method always gives the first right
m — th digits choosing k£ = 10™, than it always gives an Approximated Lower Value of the
Root.

In case the Rational Root has a Period bigger than our computational power, and we are
not able to discover with other method is there is a factor K = m; that leads to a Zero
Rest once we set a Recursive Step Difference K = 7y, it is clear we cannot distinguish be-
tween a Rational or an Irrational.



92

Is also clear this is an easy / non fast, non computational useful method, but I’ll show
that this will be a very useful method to solve Power Problems, like prove the Irrational-
ity of a Number, prove Fermat the Last, Beal Conjecture etc. Here I patch the table of the
Recursive Difference K = 10 that show us the Cubic Root of 31 with one Decimal digit.
Than T'll do the same rising K = 100

It must be clear that this is not the ’Infinite Descent” we know it was used by Fermat’s
and Newton’s use for their proof for n = 4 and n = 3, but is a new more powerful method.

=10 P=31
X M3 10 = 3x°0K-3wK"2+1/K"3|  SUM | Difference
0,1 0,001 0,001 30,999
0,2 0,007 0,008 30,992
0,3 0,019 0,027 30,973
0,4 0,037 0,064 30,936
05 0,061 0,125 30,875
0,6 0,091 0,216 30,784
0,7 0,127 0,343 30,657
0,8 0,169 0,512 30,488
0,9 0,217 0,729 30,271
1 0,271 1 30
11 0,331 1,331 29,669
12 0,397 1,728 29272
1.3 0,469 2,197 28,803
1.4 0,547 2,744 28,256
1.5 0,631 3,375 27,625
1,6 0,721 40986 26,904
1,7 0,817 4913 26,087
1,8 0,919 5832 25,168
1,9 1,027 6,859 24 141
2 1,141 8 23
2,1 1,261 9,261 21,739
22 1,387 10,648 20,352
2.3 1,519 12,167 18,833
24 1,657 13,824 17,176
25 1,801 15,625 15,375
2,6 1,951 17,576 13,424
2T 2,107 19,683 11317
28 2,269 21,952 9,048
2,9 2,437 24,389 6,611
3 2611 27 4
p= 3,1 2,791 29,791 1,209
3,2 too|big 2977 32,768 -1,768

To make the cubic root of 31, with 1 digit precision we have to keep K = 10, then use the
Gnomon: M;/ 9 = 3z2/10 — 32/10% + 1/10%. Starting from 0.1 going ahead till the Next
Step it gives a Gnomon that is Too Big to be subtracted from the Rest we have.
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I'll show now what happens rising K = 10%: a new right digit will appear, this means this
algorithm alway gives us the approximation by defect of the true root till the m — th digit,

here now m = 2.

X

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

3.07

3.08

3.09

3.1

3.11

3.12

3.13
p=3.14

K=100 P=31
Ms3,100,x=3x*2/100-3x/10072+1/100/3
M3,100,x SUM Diff. 31-Ms,100,x

0.000001 0.000001 30.999999
0.000007 0.000007 30.999992
0.000019 0.000019 30.999973
0.000037 0.000037 30.999936
0.000061 0.000061 30.999875
0.000091 0.000091 30.999784
0.000127 0.000127 30.999657
0.000169 0.000169 30.999488
0.000217 0.000217 30.999271
0.000271 0.000271 30.999
0.281827 0.281827 2.065557
0.283669 0.283669 1.781888
0.285517 0.285517 1.496371
0.287371 0.287371 1.209
0.289231 0.289231 0.919769
0.291097 0.291097 0.628672
0.292969 0.292969 0.335703
0.294847 0.294847 0.040856

0.296731 -0.255875

3.15 too big  0.296731

So if you need m digits, you've to take K = 10™

In case you rise the last significant digit, and you continuous to rise K, you'll just find

other digits equal to zero.

If you see a periodic sequence of results, then you are sure you’ve a Rational, but if no ze-
ros nor periodic sequence is shown, than, if your are not able to discover the right Factor
K,of P = Q/K € Q, you still lie in the doubt if you are playing with a Rational or an
Irrational. To prove you are playing with a Rational This is another proof that Factoriza-

tion play a very important rule in several Math problems.

I choose Numbers Base = 10, but we can did the same for any Base.
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We can therefore state out first Theorem and we can now also use the Law of Trichotomy
in this way:

If we are working with a power of an Integer, only, the result of the Sum / Step
Sum is independent from the K we choose:

If A e NT than we can write A" as a TRIPLE EQUALITY:

A A A A
M= 3 My= 3 Mo = Jim Y M= [ 32’
z=1 a=1/K a=1/K 0

Remembering that:
n mn—l n xn—2 n an_?) 1
" (1) K (2) Kz (3) K3 T

If Ap € Q—N: A= P/K than we can write A7 as:

A A Ag
A" < Agh = 3 My = lim Y M= [ s
z=1/K z=1/K 0

If Ap € R —Q with Ag = Irrational, than we can, in general, write A% as:

A AR AR
ANn < AQn = Z Mn,K < ARn = [gliﬂoo Z Mn,K = /0 3I2d{E

z=1/K z=1/K

And as told if the Trrationality of Ar depends on a known factor, for example Ap = /2 *
Ag where Ag = P/K € (Q), than is possible to hack again the Step Sum step s = (1/K) *
V2 to let it work with a finite number of Irrational Steps.

BUT, MORE IMPORTANT, we can BOUND Ay AND Apg in this way:

If A € Q—N: Ag = P/K than we can write Af, as:

AN" < (PJK)" < (P +1)"/K"

If Ap € R—Q with Agr = Irrational, than we can, in general, pack A% between the fol-
lowing Bounds, independently on how bug K is:

Ag Ag+1/K
Z Mn,K < ARn < Z Mn,K

z=1/K z=1/K
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With the known conditions, THAT WE ALREADY KNOW THAT AT THE LIMIT FOR
K — oo JUST BOTH THE LIMIT CONVERGE TO Ag", so is again TRUE THE EQUAL-
ITY:

AQ Ap AQ+1/K
lim M, k= 32%dr = lim E M, x
K—oo ’ 0 K—oo ’
z=1/K z=1/K

This is the most interesting property we have seen till now, since this allow us to Re-Define
using our Complicate Rational Modulus what an TRRATIONAL ROOT is. And we al-
ready have seen that this Convergence is NOT SMOOTH, but in media it is Monotone
Convergent.

What is now, I hope more clear is that via Exact Calculus, so applying the rule for find-
ing maximum and minimum, we can now easy find the abscissa of two following rationals
having the same ordinate (in our polynomial function, for the moment).

But also, if we are smart enough to find the Proper Rational Derivation Step, to find one
or all the Rational Roots of our Polynomial equation.
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Chapt.9: How to work with Irrational values

There is a last interesting case: our Step Sum can be able to rise an irrational value P €
R — Q just in case the Irrational Factors (be it a single one, or, more in general, an aggre-
gation of Real Numbers we can qualify as an Irrational) can be taken out from the sum.
This is the key point I'll use in the Vol.2 to prove Fermat is right and he has in the hands
all the "simple" instruments shown till here to state your Last theorem and prove it.

I know from several years of discussions on several different forums that while it’s clear for
everybody that (for example) if:

P=rxA?

we can write is as:

A
P:W*A2:7T*ZQZE—1
1

It’s complicate for someone to understand that we can carry (for example) the Square Root
of m into the Sum in this way:

Ax\/m

A
PZW*AQZW*ZQZL‘—lz Z 20 — 1
1 s/
Where we move of an Irrational step:

Lk /T 2%/, ik, Ax /T

Since as told and proved in the previous chapters, when we multiply the index for a cer-
tain value K means we multiply all the Sum by the n-th power of such K

As shown in the previous chapters this holds true also when the value K is a Rational k =
/K

Here an example (and proof) of what happens in case we have K = V2. Taking z =

X/\/§:

V2
A2 13 A
P=¢’="—="= 2r—1= = __=
e mpiais Y T
z=1//2
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Sqares Below Y=2X"First Derivative: Y'=4X

The First Derivative is squared
by Irrational Gnomons

x=X/sqrt(2) Agm = Dx * Ygm =M2_k=sqrt(2): Ygm =M2k*sqrt(2) Sum=X"2

0.707106781
1.414213562
2.121320344
2.828427125
3.535533906

Dx=x(i+1) - x(i)

2*M_2,K= 2%(2x/sqrt(2) -1/2)

1

O N U0 W

Y'=dX

%2

~
) < ]
5=), ) [/ i
Xt ) (V
5:[4de
X=0
5
:: ? # 9
HINEo! X
: J 5:2* —
sl
j @
-
Al
i1 2345 >

HER R

1.414213562

4.242640687

7.071067812

9.899494937

12.72792206

2

\2

16
25

1
2

2

N
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A is a positive integer, the sum has an integer number of summands, but we have a Step
that is an irrational number.

We can write:

- 2 1 1 —~ (Zz 1
22 (g wm) 2t 225 3) -

x=1 r=1

2*(213:)—211:%—@:@24—@—&:@2.

Another example in case n = 3:

a

X 2 1 333 1 1 a , a @
2*2{3* (2(1/3)> * 2(1/3) (2(1/3) * 2(2/3)> +§} —3*220 —3*Z;x+z_;1 _

r=1 =1

3a(a+1)(2a+1) 3ala+1) 2a 2a*+3a*+a—3a>—-3a+2a
N 6 T2 T2 2 -

This will becomes useful when in the Vol.2 I'll present my proof of Fermat the Last Theo-
rem.

The point is always the same: If C' is an Integer we can rise an Irrational Upper Limit
Value, for example C/2'/™ making an Integer Number of Step equal to C, at the condition
that we use the right Irrational Step K = 1/2'/". So the base of the Gnomons has to per-
fectly divide the distance x from the origin, here 2 = C//21/".

For the same reason is also true, for example that:

1/3
b AN 2w
= =5m= D 5B
z=1/21/3

The same for any other Power following just the Power rules.
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How to use different Irrational Complicate Modulus to represent the same value

I hope is clear now that we can use different Irrational Complicate Modulus to represent
the same value.

For example we can use M, ; or any other M, ; to represent a Square.

Here a Square written via Cubic Irrational Modulus:

v o1 0 32 3
DVl D Dl R
z=1/p!/3 a=1/p!/3

Unfortunately to dismount the Left hand using part of the Right hand terms (or vice versa)
is possible but will not lead to the identity 0 = 0 since we have different Triangles, but will
lead to a solving equation we know has p as solution.
For those still can’t believe to my Irrational Complicate Modulus Algebra here is the nu-
merical example:

Table 6: Representing an Irrational Square (of 13), via Irrational Cubic Modulus

X x/131/3 (3 x22/(13)Y/3) — 3 x2/((13)?/3) +1/13 Sum
1 0,42529037 0,076923077 | 0,0769231
2 | 0,850580741 0,538461538 | 0,6153846
3| 1,275871111 1,461538462 | 2,0769231
4| 1,701161481 2,846153846 | 4,9230769
5| 2,126451851 4,692307692 | 9,6153846
6 | 2,551742222 7 | 16,615385
7| 2,977032592 9,769230769 | 26,384615
8 | 3,402322962 13 | 39,384615
9 | 3,827613333 16,69230769 | 56,076923

10 | 4,252903703 20,84615385 | 76,923077

11| 4,678194073 25,46153846 | 102,38462

12 | 5,103484443 30,53846154 | 132,92308

13 | 5,528774814 36,07692308 169

What is interesting is the (quite trivial) fact that some Term of the Sum is an integer value.

And it happens each time (using the same example) we have 13)%/3 for what:

3x22/(13)1/3)) — 3% 2/((13)(2/3)) + 1/13 = integer

So when:

3x X2 —-3xX+1
13

) modl3 =0
in this case X = 6 gives:

3%62—3%x6+1

13 7

and X = 8 gives:
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3x8 —3x8+1

13
Again we have new series for Oeis.org, but unfortunately they no longer appreciate my so
productive work...

=13

But, most important, there is a know method to mathematically solve this congruence, re-
membering that:

ar +br+c=0 <% (2az + b)? = b* — 4ac  (mod p)
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Chapt.10: Out from the Rational:

We can now try to revisit some classic math problem, for example how to prove that the
n-th root of an Integer, is not a Perfect n-th power, is an Irrational. While the Classic Proof
start from the fact that we must already know that the initial number is not a Perfect n-

th power, so we need to make a numerical check of it before starting the proof, the proof
via Complicate Modulus Algebra seems to me more direct.

Proof that P("/") = Irrational if P # p" ; P,p € N:

Standard Proof are based on the Initial Statement that P € N or A is a Perfect Square.
From some Algebra book you can find this sort of proof seems to me "more than obscure":

"Classic Proofs of Irrationality of v/2:

A short proof of the Trrationality of v/2 can be obtained from the Rational Root Theorem,
that is, if p(x) is a Monic polynomial with integer coefficients, then any Rational Root of
p(z) is necessarily an Integer.

Applying this to the polynomial p(z) = 2? — 2, it follows that /2 is either an Integer or
Irrational. Because v/2 is not an integer (2 is not a perfect square), v/2 must therefore be
Irrational.

This proof can be generalized to show that any Root of any Natural Number which is not
the Square of a Natural Number is Irrational.

I very disagree with this kind of 'proof’ since it prove you nothing ..if you don’t know what
many other things are... And in case A € Q and in case we don’t know if P is a Per fectSquare,
then we have no way to prove if VP is an Irrational or not."

But the above proof can looks circular (to one do not well understand it) since it seems it

start assuming that an Irrational p is not the Root of a Perfect Power, then close saying it
is for sure not an Integer since it Square is not the Square of an integer. So a student need
to spend time on to understand how it works.

The Old proof looks more clear:
Suppose that v/2 is a rational number. Then it could be written as

.
q

for two natural numbers, p and ¢g. Then squaring would give

p
2 =1

q2
2q2:p2

so 2 must divide "p”"<sup>2< /sup>. Because 2 is a prime number, it must also divide p,
by Euclid’s lemma. So p = 2r, for some integer r, But then

2¢° = (2r)? = 4r?
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¢ = 22
which shows that 2 must divide ¢ as well. So ¢ = 2s for some integer s. This gives
p_2r r
g 2s s

Therefore, if v/2 could be written as a rational number, it could always be written as a ra-
tional number with smaller parts, which itself could be written with yet-smaller parts, "ad
infinitum”.

But for the "Well-ordering principle" this is impossible in the set of Natural Numbers.
Since v/2 is a Real Number, which can be either rational or irrational, the only option left
is for v/2 to be irrational.

(Alternatively, this proves that if v/2 were Rational, no "smallest" representation as a frac-
tion could exist, as any attempt to find a "smallest" representation p/q would imply a smaller
one existed, which is a similar contradiction).

So here I try to present a proof using the Complicate Modulus Numbers.

Proof that if P € Q — N then P/" ¢ Q so P'/" is an Irrational:

I can show with our new n-th Root method we can prove it without knowing in advance if
P is a Perfect Power:

If P/"Q = Q/K and (both) K = 10™ perfectly divide Q and /K has a Finite Number
of Decimal Digits m € N, than we can transform P in an integer multiplying it by 10™,
than making our n-th root with the Recursive Difference modulo M,, we can have just two
case:

The difference stops with a Rest = 0 or not.

In case we have Rest = 0 than P'/" € Q, else if Rest > 0 than PY/" ¢ Q.
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Another Infinite Descent:

Another, unnecessary way, is to use the Rational Complicate Modulus M, k1o to see that
if (P % 10™)/" € N than the recursive difference stops exactly to p = (P * 10™)"/", with
p € N, so the first Decimal Digit (and all the following if we rise m) will be Zero. While
if it doesn’t, we will have one more significant Decimal Digit and at this point we are sure
continuing to rise m we will have infinite many non periodic Decimal Digits.

But one can be unfamiliar with this kind of Modular Algebra and can ask for more details
so we can complete the proof using the limit of the Sum for K — co so what is my Infinite
Descent:

We know that:

Y 2 o 1 v2
(v2) —2—1}2“%[;(?—@)—/0 2edv =2

The very clear proof comes by the fact that we can define 2 Bound:

A Lower Bound having a Rational Upper Limit (Upper Limit for the Lower Bound) is
ULLB = Q/K < /2 since we know is:

for any K € NT

And an Upper Bound, since we rise a Rational Lower Limit for the Upper Bound (Lower
Limit for the Upper Bound) LLUB = ULLB 4+ 1/K = Q/K + 1/K > /2 since we know
is:

ULLBYI/K /) )
3)? =2 < o
V2 > (%-7)

for any K € N*

And we know by limits rules that both Upper and Lower Limits converge to v/2 for K —
00

ULLE /op 1 ULLBAUE r90
2

S (Fm) << X (%)

/K 1/K

Still if it isn’t a smooth convergence, in fact if we plot the Best Rational Approximated
Lower Value ULL = Q/K < V2 rising K from 1 to 10™ we will see a Saw Teeth func-
tion like the one below, due to the fact that some K divisor better approximate the Limit
Value:
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RATIONAL APPROACH to \sqrt{2)

K x ULLAZ - (UULJA2 = (ULL+1/K)A2 >
1 1 1 P
2 1 1 225
5 1333333 177777778 2777777778
4 125 15625 225
s 14 196 256
6 1333333 177777778
7 1285714 165306122 2040816527
8 1375  1ssoe2s
s, 1333333 177777778 2086419753,
10 14 186 225 21
11| 1363636| 1.85950413 2115702479
12| 1333333 177777778 2006943444
13| 1384615| 1.91715976 2136093675
14| 1357143| 186183673 2040816327
15 14 186 215111111
16| 1375 1ssoszs 206640625
17| 1.411763| 1.99307958 2162629758
18| 1.388889| 1.92001235 2086419753
19| 1.368421| 167257618 2019390582
20 14 186 21025
21| 1.380952| 1.90702948 2040816327 e
22| 1.409091| 1.98553719 2115702479
23| 1391304| 1.98572779 2058601134
26| 1375 1ss0625 2006944444
25 14 186 20736
26| 1.384615| 1.91715976 2025147929
27| 1.407407| 1.98079561 2086419753
28| 1.392857| 1.9a005102 2040816327
29| 1.413793( 1.99881094 2097502973
30 14 186 2054343044
31| 1.387097| 1.92403746 2014568158| ¥
32| 140625| 1.97753006 206640625
33| 1.393939| 1.9a306703 2028465083
34| 1.411765| 1.99307958 2076989619
35 14 196 2040816327
36| 1.988889| 1.92901235 2006943444
37| 1.405405| 1.97516435 2051862673
38| 1.394737| 1.9a520085 2019390582
39| 1.410256| 1.98882314 2061801445|
a 14 196 2030625
41| 1.390244| 1.95277811 2001189768
42| 1.404762| 1.97335601 2040816327 o5
43| 1.395349| 1.9a609838 2012839156
44| 1.409091| 1.98553719 2050103306
a5 14 196 2022716049
45| 1.413043| 1.99669187 2058601134
47 1404255 1071033 203214122
48| 1395833( 1.0a835069 2006943444 ——LOWER BOUND
49| 1.408163| 1.98292378 2040816327
50| 1.4] 196 2.0164| == EEROOUND
51| 1.411765| 1.98307958 2048827374
52| 1.403826( 1.97078402 2025147929
53| 1.396226| 19494482 2.00249199 o
54| 1.407407| 1.98079561 2033264745| o 0 100 150 200
55, 14 196 2011239669

Of course you need to write some line of code to obtain the closest two Rational Values,
and at the moment there is no LaTeX sing to define what is similar to the Floor / Ceeling
operator, but that works with Rational, and as you can see will have infinite number of
Values depending by the K you choose.

What is important here, after you wrote your program to sort the Value of the Sums rising
K you need to build this graph

is to remember that any software works with a limited number of Digit, and this will affect
your Measure by an error.

You can try to figure out how the error behave, making the same approach to a Known
Genuine Square, here for example 9. As you can see the digit my VB Program take in count,
will produce this error:

Looking at the value we see that are little enough to NOT disturb too much the real Mea-
sure, but for sure an error is present and we have to remember that the Sum of Two errors

/ approximations will not give an error that is exactly the Sum of the Two.
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x  LowerB. Upper Bound |,
p s
62s
[RTeereren
75625
784
5 sou7TITS

This is a "test" to check if the program you use to sort
3 sw the closest Square "3*2=9" (Lower and Upper Bound), works well.
. Instead to have all "9" as Lower Approx. Rational Square

[ 3 9 9553713008

e sometimes, due to EXCELS approximate summation

9 0433673269

| i e can happen that the result miss or exceed "9".

I—— This has to be considered as an error of the mesaure
R —— B . instrument and you need to check if this error
T T — will affect too much the True Sum, or not.
e = VNS
ERE VWWUU MWWy

E—— Closes Ratoral Roo! =3

3
) 38 2973684211 8.842797784 9
3

3 9.154503616 58 v‘ 2 x
s s Lower Bound = p*2=9 =?L7 -

1
K?

v a0 3
}| 41 2975609756 8854253421 E]

3 9 9.143424036
43 2976704186 8.851005849 s
5| 44 2977272727 8864152893 s
1| a5 3 9 913382716
3| 46 297826087 8870037807 9

) 47 2978723404 8.872793119 9 86

) 3 9 9.125434028 Closest Rational Root has to be 3 if your program make the right Sum considering all the digits
49 2679531837 8.87796751¢ 9 ! L ; e i, L - o

i £E i 3 But this never happen, since it is the same to ask to a mesaure instrument will gives you an infinite number of digits so an infinite precision

x_‘ 51 3 9 9118031526 So you need to make a "calibration" Test like this each time to have a correct (if possible) view of the result you will see on your final data.

i s 3 5 s.is750438

5| 53 2981132075 8.887148451 s

Here an example of the Error EXCEL did on the Step Sum, Step 1/K (K=1 to 1000) till
B* =6

A5 86 B3 (B+1/K}"3  (B+1/K)
e
S — — —
i —
e
T 2
T prrC
TP e —
8 216 2297832 6.125 =
e
O
e
T P —
P —
o
R = v
"
K
T
— P
T |
et
o s
e e
T T
e
— e
iy
31 6 216 2195026 6.032258 215
S ——— e
e
R
TR
T e T —

T o
E—

e el oo
e
R o —
e el
- — T
T m— T R
E ——
e S—
o e
v
Tt
T T ae

216 2180062 6018519 210

6 216 2179696 6018182 o so 100 150 200

s5
56 5982143 2140772 216 o 1

Here an example of the Error EXCEL did on the Step Sum, Step 1/K (K=1 to 1000) till
B3 = 603. As you can see Measure Scale makes Lot of Difference !

All this will be very useful once we have to prove the FLT, but to prove the theorem we

will need to find a way to generalize for a generic triplet value represented by Letters A,B,C,
instead of a single known triplet of numbers, here for example A = 5, B = 6, for what for
n—3 will happen that: A3 + B3 = 341 # C? = 73 = 343.



106

| A0 B=60  B'3-216000 (B+1/KN3  (B+1/K)
| 1 0 216000 226081 61
| 2 0 216000 2214451 605
3 5066667 212419963 216000 6
4 216000 2187113 6025
f 5 508 213847192 216000 0
1l 6 216000 217805 6016667
| 7 5085714 2144608134 216000 )
i 5 216000 2173528 60.125
1 9 5088589 2148022209 216000 2
i 10 9 214921799 216000 60
1 11 5990909 215019.6687 216000 2
12 5901667 2151012494 216000 2
13 5992308 2151702954 216000 0
i 14 216000 2167723 6007143
] 15 5993333 2152807997 216000 2
i 16 216000 2166757 600625
i 17 5994118 2153653285 216000 0
i 18 5994448 2154005554 216000 60
19 5904737 2154320774 216000 2
20 216000 2165405 6005
[ 21 5995238 2154861223 216000 0
i 22 5995455 2155004627 216000 0
23 0 216000 2164699 6004348
2 0 216000 2164503 6004167
] 25 216000 2164323 6004
i 26 5996154 2155848816 216000 0
27 5996206 2156002469 216000 0
l 2 216000 2163859 6003571
i 29 5996552 2156278002 216000 2
1l 30 2163602 6003333
i 31 60 216000 2163486 6003226
il 52 216000 2163377 6003125
q 33 599697 2156728925 216000 2
i 34 5967050 215682.5086 216000 2
35 597143 2156015755 216000 2
1 36 5997222 2157001389 216000 2
37 ) 216000 216292 6002703
38 5097368 2157159141 216000 2
| 39 5997435 2157231852 216000 60
I a0 2 216000 2162701  60.025
i a 2162635 6002439
, 42 5097619 2157429592 216000 0
7 a3 2162513 6002326
44 5097727 2157546384 216000 2
7 45 5097778 2157600889 216000 0
il 5 23 216000 2162349 6002174
o 216000 2162299 6002128
48 5097917 2157750781 216000 0
1 49 5907959 215779.6668 216000 2
| 50 5998 215784072 216000 2
1 51 5908039 2157883045 216000 0
52 216000 2162078 6001923
53 216000 2162038 6001887
i 54 5908148 2158000617 216000 0
| 55 2161964 6001818
56 soos214 215807.2002  216000] &0l
Ass B=5 Approach example to (AN3+B13)=341
o3 }
K

6666566567
675

63
6833333333
6857142857
6575
6.88888889
69

90903009
6916666567

5958333333

6%
961538462

6979166567
6978591837
6980352157

6980769231
6981132075

2962962963
307.546875

3190787037
322.425655.

340 108361
3402338843

§

(C_tower)"3 (CrOVER)"3
216 343

216600

216400

216200

216000

215800

215600

215400

21500

——LOWER BOUND

——UPPER BOUND.

s P —
—(C_Lower)A3| —(CAOVER)A3
o 0 w0 o %o w00
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A turn in the real life of measuring:

What is also interesting, for those is not familiar with Measure theory, and art, is that in
case we are making a real Measure with an instrument that has a precision K, and one
wanna obtain the Best Possible Result (having a finite budget) is NOT at all sure that
spending more for a more "precise" instrument, so with a Bigger K, one have back , for
sure, a Better Measure or the Better one.

In fact in this last example one having an instrument with precision K = 73
measuring the the Irrational Root coming from the value of 341

with an instrument capable to Measure just Rational Powers n=3 with the M,, x modulus,

will obtain 340.9902395,

while one having an instrument with precision K = 954
have back a worst 340.8472866.

And since the cost of a 12 times more precise instruments is several times more than 12
times, just, (and sometimes it is more than 122 or out of any budget at all if physically im-
possible to be built with the actual tech) , one can immediately understood how is impor-
tant to choose the right K while making a Measure, so to choose the right instrument. For
those are familiar with electronic device you know the problem of measuring the Voltage
on a circuit, over a resistance: depending if we have an high or big resistance we need to
evaluate if use a voltmeter (that has an high internal resistance) or an ammeter, that has
a low resistance.

Understood what above, will be easy to write another Proof:

Proof of Legendre Conjecture:

I hope what follows will prove the Legendre’s conjecture:
Be: m; the i-esim Prime Number, then

(2 1 L o 1
Z(?_ﬁ) <Wm) < (?_ﬁ)
1/K 1/K
Where I hope you already are, now, familiar with my Step Sum notation.

2) A clarification of what let the inequality be true, comes from the easy concerning that

for any R € R — Q is true that:
R R
/ M, ko dx < / nX"dx
0 0

R R
/ M, kg1 dz > / nX"dx
0 0

and
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for any K € Q*

- So the proof comes showing that since the Limit exists and is our Irrational (square),

and that till /& is not at his Limit (c0), Both the Terms (all the terms), still if calculate as
an Integral between 0 and R, or as a Sum between 1/K and R, show true the inequality
because they are

LITTLEST THEN THE ONES AT THEIR LIMIT FOR K — oo ARE.

In short till we have a Gear (instead of a smooth circle) we cannot rise an Irrational Up-
per Limit or a Limit that is an aggregation of Irrationals (will not produce a much or less
trivial cancellation).

3) But the theorem can be extended to all the Irrationals R and to all the aggregation of
Irrationals (sum, product, etc...) WE CAN PROVE will not produce trivial cancellation(s)
and are for so Proven Irrationals.

Trivial cancellation are for example:
pra=01+v2)+(1-v2)
prq=(V2)*(1/Vv2)

WHILE WE HAVE TO TAKE LOT OF CARE WITH NON TRIVIAL (Known) CAN-
CELLATION, that are probably Wrong.

So before prove that e + 7 or 2¢ and several other tricks with Irrationals, are for sure Ir-
rationals too, we need to reflect about the fact that Limits will not always returns the ex-
pected simple/clear result, so we can divide them in two Classes:

1- The one having Convergent Bounds (also non smooth but in some ways strictly conver-
gent):

so calling LB the Lower Bound and UB the Upper Bound
for any =z, is
yre < Limit and yyp > Limit,

(or in the known notation y, B = Limit — € and yy B = Limit + € for any arbitrary little
e>0..)

2- And the one having NO Convergent Bounds:
For example be:

UL=0c0
>
1
with
a; = 1 for 1 = odd
and

a; = —1 for i = even
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it is known it has an Indeterminate Limit, since I'T IS NOT POSSIBLE to establish how
such sequence will "end" at oo: in fact for UL € N the answer is 1, or 0 depending if the
UL = Odd or UL = Fven, but the reason can be better argued now:

Since there are No vanishing terms in this construction, is Not Possible to Define Converg-
ing Bounds, so WE CANNOT ASSIGN TO THIS SERIES A GENUINE VALUE AT ITS
LIMIT (as already well known)

What is now, I hope more clear is that via Exact Calculus, so applying the rule for find-
ing maximum and minimum, we can now easy find the abscissa of two following Irrationals
(too) having the same ordinate (in our polynomial function, for the moment).

But also, if we a smart enough to find the Proper Irrational Derivation Step, to find one or
all the Irrational Roots, too, of our Polynomial equation.
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Complicate Modulus Algebra on the Imaginary Plane:
Root of a Negative Number:

Taking v/—1 as example we can tray to extract this square Root with my Recursive Differ-

ence for Genuine Squares Modulus, so using the My g~ = 22/K — 1/K we get a wrong
result:
X x=X/10  2x/10-1/10"2  SUM Diff.
Square= -1
-1 -0.1 -0.03 -0.03 -0.97
-2 -0.2 -0.05 -0.08 -0.89
-3 -0.3 -0.07 -0.15 -0.74
-4 -0.4 -0.09 -0.24 -0.5
-5 -0.5 -0.11 -0.35 -0.15 TOO LITTLE
-6 -0.6 -0.13 -0.48 0.33 TOO BIG
X x=X/10 2x/10%2-1/104  SUM Diff.
Square= -1
4 -0.01 -0.0003 -0.0003 -0.9997
-2 -0.02 -0.0005 -0.0008 -0.9989
-3 -0.03 -0.0007 -0.0015 -0.9974
-4 -0.04 -0.0009 -0.0024 -0.995
-5 -0.05 -0.0011 -0.0035 -0.9915
6 -0.06 -0.0013 -0.0048 -0.9867
-25 -0.25 -0.0051 -0.0675 -0.3825
-26 -0.26 -0.0053 -0.0728 -0.3097
-27 -0.27 -0.0055 -0.0783 -0.2314
-28 -0.28 -0.0057 -0.084 -0.1474
-29 -0.29 -0.0059 -0.0899 -0.0575 TOO LITTLE
-30 -0.3 -0.0061 -0.096 0.0385 TOO BIG
X x=X/1073 2x/1073-1/106 SUM Diff.
Square= -1
-1 -0.001 -0.000003 -0.000003 -0.999997
-2 -0.002 -0.000005 -0.000008 -0.999989
-3 -0.003 -0.000007 -0.000015 -0.999974
-4 -0.004 -0.000009 -0.000024 -0.99995
-5 -0.005 -0.000011 -0.000035 -0.999915
-6 -0.006 -0.000013 -0.000048 -0.999867
-133 -0.133 -0.000267 -0.017955 -0.189099
-134 -0.134 -0.000269 -0.018224 -0.170875
-135 -0.135 -0.000271 -0.018495 -0.15238
-136 -0.136 -0.000273 -0.018768 -0.133612
-137 -0.137 -0.000275 -0.019043 -0.114569
-138 -0.138 -0.000277 -0.01932 -0.095249
-139 -0.139 -0.000279 -0.019599 -0.07565
-140 -0.14 -0.000281 -0.01988 -0.05577
-141 -0.141 -0.000283 -0.020163 -0.035607
-142 -0.142 -0.000285 -0.020448 -0.015159 TOO LITTLE
-143 -0.143 -0.000287 -0.020735 0.005576 TOO BIG

But this is just because, we know, the Root of —1 lies on another plane that is not the X-
Y one, so it is not a Real Number. But the power of my Complicate Modulus Algebra is
that there is an appropriate modulus perfectly extract the Square Root of —1 (and any n-
th root of negative numbers) using the proper Imaginary Complicate (Rational) Modulus
Mn,K,i-

To have the good result we have to change plane so keep the right Versor j (since we are
no longer talking of Real Ordinate Y, but imaginary one we usually call i), and this hap-
pen simply changing all the sign of the Terms of the Complicate Modulus:
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9 1
> (5 tm) =1
ji=1/K
A B € D E F G H 1
i J/KK=10 | -j/K+1/Kr2| SUM i /K K=100|-j/K+1/K"2 SUM
1 0.1 -0.01 -0.01 1 0.01) -0.0001| -0.0001
2 0.2 -0.03 -0.04 2 0.02] -0.0003| -0.0004
3 0.3 -0.05 -0.09 3 0.03| -0.0005| -0.0009
4 0.4 -0.07 -0.16 4 0.04| -0.0007| -0.0016
5 0.5 -0.09 -0.25 5 0.05/ -0.0009| -0.0025
6 0.6 -0.11 -0.36 6 0.06/ -0.0011| -0.0036
7 0.7 -0.13 -0.49 7 0.07| -0.0013| -0.0049
8 0.8 -0.15 -0.64 8 0.08/ -0.0015| -0.0064
9 0.9 -0.17 -0.81 9 0.09 -0.0017 -0.0081
10 1 -0.19 -1 10 0.1 -0.0019 -0.01
11 1.1 -0.21 -1.21 11 0.11) -0.0021| -0.0121
12 1.2 -0.23 -1.44 12 0.12 -0.0023 -0.0144
94 0.94| -0.0187| -0.8836
95 0.95 -0.0189 -0.9025
96 0.96/ -0.0191| -0.9216
97 0.97| -0.0193| -0.9409
98 0.98/ -0.0195| -0.9604
99 0.99| -0.0197| -0.9801
100 1| -0.0199 -1
101 1.01) -0.0201| -1.0201
102 1.02] -0.0203| -1.0404
(c) Stefano Maruelli 103 1.03 -0.0205 -1.0609

And in this case is again True the Equality at the Limit, in fact:

1 . 1
. —2] 1 . T 211
d 3 G g [ el =

j=1/K =0

So we can deal now with a Real Complicate Number, and with a Imaginary Complicate
Number, that as the known one can be made by two part: a Real one plus a Complex one,
and funny story, we again have our Talking Index that is now a Versor, x for Real, j for
imaginary remembering one must be 90 degree respect to the other since we can see here-
after that if we try to force a negative Index into the Sum, we no longer have back an n-th
Power.

In this way holds true the same Rule for the Integer/Rational/infinitesimal (here for square)
we already seen in the previous chapters.:

Ip| Il

, —2i 1 —9i 1 L
P=d 2jr1= Y Pegp=tm Y e[
J=1 j=1/K Jj=1/K !

So, most in general, the Imaginary Complicate Modulus is:

My =—=(J"=(J=1)")
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and follows that to have the Rational one we will call: M, ;k is enough to change the sign
of all the terms of the known Rational one M, x

Now the interesting question (for me):
- is "J" the imaginary Versor on witch Imaginary Roots of Negative Numbers Lies On 7

- or we can use X instead of J since it is the "continuation" of the same known X Versor ?

Will be enough to write a little collection of numerical example to have back the answer:
we have just to try to keep J Positive or Negative, and to make all the possible exchange
of Signs into the Modulus formula:

Table 7: TRYING TO USE A NEGATIVE INDEX and THE SAME MODULUS M, ; = —-2J +1

J | -2J+1 | SUM | DIFF. -119 |
-1 3 3 -122
-2 5 8 -127
-3 7 15 -134
-4 9 24 -143
-5 11 35 -154
-6 13 48 -167
-7 15 63 -182

So this is not correct. As will be wrong to use the (classic) COMPLICATE INTEGER
MODULUS M, = 2X — 1:

Table 8: TRYING TO USE A NEGATIVE INDEX and THE (classic) COMPLICATE INTEGER MOD-
ULUS My =2X —1
X | 2X-1 | SUM | DIFF. 119

-1 -3 -3 122
-2 -5 -8 127
-3 -7 -15 134
-4 -9 -24 143

-9 -11 -35 154 | 7777
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2 we can use the IMAGINARY SPECULAR MODULUS M, = 2X +1

Table 9: USING A NEGATIVE INDEX and IMAGINARY SPECULAR MODULUS M,y =2X +1

X
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11

2X+1 | SUM | DIFF. -119
-1 -1 -118
-3 -4 -115
-9 -9 -110
-7 -16 -103
-9 -25 -94

-11 -36 -83
-13 -49 -70
-15 -64 -95
-17 -81 -38
-19 -100 -19
-21 -121 2

<- P=-10i

Rest -19

While if we go higher for ODD powers we can see we have a wrong result. This is the clas-

sic Cubic Root:

O U W N

-3J2+3J-1
-1

-7

-19

-37

-61

-91

Table 10: Add caption

SUM
-1

-8

-27
-64
-125
-216

DIFF. -139
-138

-131

-112

-75

-14

7

CUBIC ROOT

<- P=-5i

While this is the Wrong one using the Negative Index and the Imaginary Complicate Mod-

ulus:

Table 11: USING A NEGATIVE INDEX and the IMAGINARY MODULUS M3 ; = —3xJ%2+3x.J —1

J
-1
-2
-3
-4
-5
-6

-7

So in this way we still

-3J2+3J-1
-7

-19

-37

-61

-91

-127

-169

SUM
-7

-19
-37
-61
-91
-127

-169

DIFF. -139
-132

-120

-102

-78

-48

-12

30

CUBIC ROOT

77

arrive to a Root, but is not the right one.
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Chapt.11: Relations between M, and M, ,_; :

A nice property of the Complicate modulus M, is that:

Mo = (n+1) [ 1) + €
Where C' is the Integration Constant

For those are familiar with Ordinals it’s clear I discovered a 2-th level of Order in Pow-
ers. We cannot just sort N and a bijection with our Gnomons M,, for one n we choose, but
ALL of them, regardless of which n, are elements of a well sorted set M, and the relation
is bidirectional so it’s also true for the derivative. So we can call this a Multidimensional
Ordinal.

For example:

MQ =2x—1
then:

Mg—(n+1)/(Mn)+C'—3/(2:z;—l)—3*(2/2x2—x)+C

C will be 41 in case n is ODD,

C will be —1 in case n is EVEN
So:

Ms =322 -3z +1
And so on.

The Proof is easy and follow the well known integration rules.

Another property of the Gnomons M, is that:

So
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Chapt.12: How to "LINEARIZE" the n-th Problems

Continuing to show the rules to manipulate the sum without changing the result, I'll show
here how to apply the previous RULES, in a SUM manipulation that allows us to Write

Any POWER of Integers Y = X" n >= 3 as a SUM of LINEAR TERMS. So we can
easily transform any n-th problem that involves just pure powers, in a linear problem.

I call this method "Linearization" for the reason it involves just linear terms, but also for
other reasons that will be immediately clear once some more rules will be presented.

Rule7: Any N-th power of integers (from n > 3) is equal to a Sum of Linear Terms:

If nis EVEN (n =2p; n > 3):

An/2
AT =" (20— 1) (1)
=1
Ifnis ODD (n=2p+1;n>3):
Aln—1)/2
AT= > (2zA- A) (2)
=1

1) Proof of the Rule7 in case n is EVEN (n=2p)
The only conditions for the (1) is A € N*, so we have:
A" = A% = (AP)? = B? but we know that:

B AP An/2
BP=) (2r-1)=) (-1)=) (2z-1)=A"

2) Proof of the Rule7 in case "n" is ODD (n=2p+1) So in this case is possible to
re-arrange the sum to have:

A" = AP = A% 4 A

For what we see just above this is equal to:

AP Aln—1)/2
Y r-1)xA= ) (2wA—A)=A"
=1 =1

So it means that with this "LINEARIZATION" we can transform any Powers Problem in
a Linear System problem. I'll investigate in the Beal conjecture inthe Vol.2, since other
properties has to be shown.
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Linearization is equal to an exchange of variable

Linearization is equal to an exchange of variable, for what is true the following General
Rule, in case we would like to arrive to a Square:

In case of an ODD Power Y = X?"*! we can write:

Y:X2m+1:X*X2m:X*ZE2

so the exchange we operate is:

X 2m+1
= = Xm
()

In case of an Even Power:

Y = X" =X x2°

so the exchange we operate is:

X2m  Xm
X VX

xr =

To better understand the consequences of this Exchange of variable we need to investigate
more in the next chapters in the field of certain Irrationals.
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How to rewrite a Linearized Odd Power, taking the Base Factor,
into the Index

Following the previous rules is possible to re-arrange the Sum an Odd Power taking the
Base Factor, into the Index, to have:

Aln=1)/2 Aln—1)/2 1

A?’L: — — _—
> exa-a= % (204
X=1 z=1/A

So for example for A =5 we can write A3 = 125 as:

Table 12: A3 Linearized, Including the Base Factor into the Rational Index

A=5 A% =125 A% =125
X 2AX-A SUM x=X/A | 2X-1/A SUM
1 5 5 0.2 0.2 0.2
2 15 20 0.4 0.6 0.8
3 25 45 0.6 1 1.8
4 35 80 0.8 1.4 3.2
5 45 125 1 1.8 5
6 1.2 2.2 7.2
7 1.4 2.6 9.8
8 1.6 3 12.8
9 1.8 34 16.2
10 2 3.8 20
11 2.2 4.2 24.2
12 2.4 4.6 28.8
13 2.6 5 33.8
14 2.8 5.4 39.2
15 3 5.8 45
16 3.2 6.2 51.2
17 3.4 6.6 57.8
18 3.6 7 64.8
19 3.8 74 72.2
20 4 7.8 80
21 4.2 8.2 88.2
22 44 8.6 96.8
23 4.6 9 105.8
24 4.8 94 115.2
25 5 9.8 125

And from now we can have a big suspect that Fermat is right since rewriting his famous
Equation in sum we now have:

AP+ B =2C°
Aln—1)/2 B(n—1)/2 C(n—l)/Q
Y Qe-1A)+ ) (2e-1/B)=? Y (22-1/C)
z=1/A x=1/B r=1/C

Where we will prove in the Vol.2, there is no way to re-arrange any of the free parameter
to let the Equality holds true in the Rational.
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As usual we can see what we are trying to do on the Cartesian Plane once we paint the 3
Powers as 3 Trapezes:

Still going Rational with the tessellation there is no way to have the equality (the genuine
proof will be given into the Vol.2)



Fermat The Last LINEARIZED:

We can tessellate each trapezoid with the maximum triangle of Base:X/2 Heigh: X

1) The trapezoid that represent A®: A3 2A2 A
2
tanor = 2A2' A
A-A AA ] a2
A2 A 5
2)The trapezoid that represent B* : B3 2B-B
2 y
tanf = 2%' B As
B™-B Bi2
| 2
B JB” 9C:iC
3) The tapezoid that represent C <
& 3
2
tany = 202' & &
C-C
Ac
cr2
//
(N
& G
Since for Fermat A,B,C = CO-PRIMES: NO SOLUTION
(]

The 3 triangles are similar, BUT with COPRIMES catheti, so none of
them can be used to tessellate all the others.

4arn Ao dc

AJ2 B2 c2

© Stefano Maruelli
A2 B2 CI2
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Chapt.13: From z" to x! via Recursive Difference

WI show now how z™ is connected to n! due to what (I just discover few months ago) are
known as Nexus Numbers. But I discover also that there are new hidden numbers, you can
call Maruelli’s Numbers or The Ghost Nexus Numbers.

| A [ B | € | D 1 e [ F | & | ® | 1 [ J [ K | £ | M | N | o |
1 © STEFANO MARUELLI

2 |n=2 X Y= X"2 Deltal= CAn-(C-1)*n Delta2 Delta3 )

3 | 1 1

Ea 2 4 3 & .

5| 2 g 562= 2

6 | 4 16 778= 2 0 (L /

O 5 25 9 2 0 o

8 | 5 36 o 2 ol | =

9| 7 49 13 2 o | £a

10 8 64 15 2 o | ¢ /

11 9 a1 17 2 0 g 40

2] 10 100 19 2 o | £, / ——Sere!

13 11 121 21 2 0 // ==

14 12 144 23 2 0 0

= 13 169 25 2 0 / L e
16 14 196 27 2 0 10 ——

7| n=2 so nl=2=9 " nﬁfd”"}

18 |this is the only case where Deltal=Delta(n-1} 1 2 4 5 5 B 5 g 10
19 \and this is the reason why Fermat worlks Integer AB C

20

21 n=3 X Y= XA3 Deltal= CAn-(C-1)*n Delta2 Delta3 Deltad 00

P 1 1 Dietta = 302+ 3¢+ 1 D2=6x D3=6

23 2 8 7 o0 i

24 3 27 19 7

25 4 54 37 18 18-12=6 -

26 5 125 61 24 6 0 /
7 8 216 al 20 6 0 e

28 7 343 127 36 6 0 o

29 8 512 169 40 6 0 3

30 9 729 0! 43 6 0 t

31 10 1000 PEa| 54 6 0 E /

(32| 1 1331 331 80 6 0 R

23 12 1728 397 86 6 0 / -
34| 13 2197 469 72 6 0 22 —
135] 14 2744 547 78 6 0 / o ‘

36 n=3 so nl=32"1=6 oo =

37 |From this case Deltal <> Delta(n-1) -‘_AMA.CJ)

38 |and this is the reason why Fermat doesen't works o . : p 3 y : : y s g
39 |But we can see that the Delta(n-1) difference permit us to make an association between Xn and n! Integer A6 C

40

4 » W[\Fogliol / Fogioz / Fogioa / IKll

Recursive differences take us from x™ to n!

I hope the above table is readable raw by raw, to see that if we call 6* the difference be-
tween two raws of the same column:

01 = C, — C,_1,(remembering that so far we call M,, =1 = (2" — (z — 1)"),

going ahead on the same raw, so making the next new columns with the new difference be-
tween two following values of the previous column:

02=D, — D, ; and th same for §3...6(n — 1)

We make the same process we did making the following derivative of a function, till we ar-
rive to a fix value that is n!

The next (last) difference is of course Zero.

We also note that all the followings derivative 3 holds the same property of the first deriva-
tive, so can be squared with a Sum or a Step Sum as shown so far, of course with the right
Gnomon.
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This are (updated from first version of this Vol.1) tables of the Recursive Difference, where
is possible to see that the behavior of the Last Significative derivative is No longer the
same of the continuous known derivative:

Fx K2 M4(x) iDelta? Delta3 :Delta4 iDelta5 Deltab :Delta7? Delta8 :Delta9 :Deltal0 iDelta1l Delta12? Deltal3 7
0 0 0 0 o o
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 3 p. 1 [4: -1 -2 -3 -4 -5 -6 -7 8 -9
3 9 5 2 o -1 -1 o 2 5 q 14 20 27 35
4 16 7 2 o o; 1 2 2 0 -5i -14; -28; -48 75
5 25 ke p. 8 8: o -1; -3 -5 -5 4 14 42 a0
& 36 11: 2 i i 0 4 1 4 9 14 14 o) 42
7 49 13 2 o o 0 o 0 -1 -5 -14; -28; -42 47
8 64 15 2 o o; 0 0 0 0 1 6 20 48; 90;
9 81 17; p. 4 4 [ G [ 4 [ -1 -7 =27 -75
10 100 19 2 o o 0 0 0 0 0 o 1 8 35
11 121 21 2 o o; 0 0 0 0 0 o; 0: -1 -9
12 144 23 p. 4 [4: o [: o [: v 4 ¥: v 1
13 169 25 2 o v 0 o 0 o v v O O 0
X xA3 M4(x) :Delta? Delta3 :Deltad :Delta5 Deltab :Delta7 Delta8 :Delta9 :Deltal0 :Deltall Deltal? Deltal3
0 0 [o: 0 o o;
1; 1; 1 1 1 1: 1 1 1 1 1: 1 1; 1; 1;
2 8 7 6 5 4 3 2 1 0 -1 -2 -3 -5
3 27 19 12 6 1 -3 -6 -8 -9 -9 -& -6; 3 1
4 64 37 18 B 4: -1 2 8 16 25 34 47 48 51
5i 125 61 24 [ v 0 1 -1 -9 -25 -50 -84 -126 -174
6: 216 91 30 6 o 0 0 -1 0 9 34 84: 168; 294;
7 343 127 36 6 o; 0 (v 0 1 1 -& -42; -126: -294:
8 512 169 4 [ 4 0 4 O 4 -1 -2: [+ 48 174
9; 729 217 48 6 o 0 o 0 o 0 1 3 3 -51
16 1000 271 54 6 o; 0 0 0 0 0 o -1; 4 -1
11; 1331 331 60 b 4 [ G [ 4 [ 4 ¥ 1; 5
12 1728 397 66 [ v 0 0 0 0 v v O O -1
13 2197 469 72 6 o; 0 0 0 0 0 o; 0; o 0
X M M4(x} Delta2 Delta3 Deltad Delta5 iDeltab Delta7 Delta8 Deltad :Deltal0 Deltall :Deltal2 Deltal3
0 v o 0 o
1; 1 1; 1; 1: 1; 1; 1; 1; 1; 1: 1; 1; 1;
2 16 15: 14 13 12 11; 10 9 8 7 6 5 4 3
3 81 65; 50 36 23 11 0 -10 -19 -27, -34; -40; -45 -49
4 256 175: 110 60 24 1 -10 -10 0 19 46 80 120 165:
5 625 369 194 84 24 [V -1 L 19 19 i -46: -126: -246:
6 1296 671 302 108 24 0 0 1 -8 -27 -46 -46: 0 126
7. 2401 1105 434 132 24 0 0 0 -1 7 34 80 126: 126;
8 4096 1695 590 156 24 [V O [o: O 1; -6 -4 -120 -246:
9 6561 2465 770 180 24 0 0 0 0 0 -1 5i 45: 165:
10 10000 3439 974 204 24 0 0 (v 0 0 o: 1 -4 -49
11: 14641 4641 1202 228 24 0 0 0 0 0 o [ -1 3
12 20736 6095: 1454 252 24 ). Q v O 4: i 4 o
4 13 28561 7825 1730 276 24 0 0 (v 0 0 o: 0 @ K

Recursive differences take us from x™ to n! and over...

As you can see in this tables is also possible to continue the table After the Last Differ-
ence (that is n!) on the Right with what I’ll call The Ghost Nexus Numbers, and the Ghost
Composite Develop, with no limits, suggesting a sort of non symmetric anti-binomial de-
velop (that is for math as a sort of anti-matter, for what I don’t know there is a real phys-
ical relation).
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n! as Sum of (n + 1) Power Terms coming from a trick on the Bino-
mial Develop:

From the previous table, so from the Recursive Difference Property we can see that in gen-
eral is true that collecting n + 1 Following Real Numbers build as (p,p—1,p —2,.....p — n)
we can always have back the value of n! using the Tartaglia’s triangle (so binomial coeffi-
cients) and the following simple exchange of variable:

For any p € R, if n = 2 for example:

p°—2(p—1)7%+(p—2)°
2 2 2
=p =2 =2p+ 1)+ (p°—4dp+4)
=p*—(2p° —dp+2)+ (p® —4dp+4)
=p?+ (=20 +4p—2) + (P> —dp + 4)

= (p? =202+ p*) + (4p—4p) + (=24 4) =1 %2 =2
For n =3

P’ =3(p -1 +3(p-2°(p-3)°
=p* —3(p* —3p* +3p— 1)+ 3(p* — 6p* +12p — 8) — (p* — 9p* + 27p — 27)
=p® — (3p® — 9p* + 9p — 3) + (3p® — 18p? + 36p — 24) — (p* — IWp* + 27p — 27)
= % 4+ (=3p° + 9p? — 9p + 3) + (3A% — 18p® + 36p — 24) + (—p° + 9> 27p + 27)

= (p* = 3p* +3p® —p*) + (9 — 18p* +-9p?) + (—9Ip+36p—27A) +(3—24+27) = 6 = 1%2%3 = 3!

etc... Or using the Known Notation for any p € R:

n! = kz% (—1’f (Z) (p— k:)”)

that it’s true that for any p € N:

nl = ,; (—1>k(Z) iil[X” - (X =17

and for any p € Q and for some p € R under condition we have seen (remembering that
the Integer K is the one let p x K € N, or the Irrational depending by a known Irrational
(typically an n-th root of an integer), has nothing to do with the integer k of the n over k
notation):



(c) Stefano Maruelli
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A" as Sum of (A —1)" and the following Integer derivative:

For a A > n we can have A" with the Sum of all the Integer Difference A3  ,.4-1 calcu-
late for the row A — 1

For example:

A =(A-1P+A+ A+ Asla1 = [(A-1)°]+[(3(A-1)*=3(A—1) +1] +[6(A—2)] +6
Soif A=5;n =3 we have:

A? = [(A=1)°]4[(3(A=1)* =3(A—1)+1]+[6(A—2)]+6 = [(5—1)*]+[(3%(5—1)° =3%(5—1)+ 1]+ [6%(5—2)]+6 = 125

The fact that we need to work with A > n is due to the construction of the Telescop-
ing Sum Triangle: we have zero as difference, or different value from n! in the first rows
of such triangles.

Nevertheless it is possible to have the right Sum also for little value of A, so for A < n in
some special case, but just if n = Even. Hereafter some example:

Soif A =3;n =4 we have:

3 =(A-1D)"+ A1+ Ao+ Ag+ Agf(a-yee = 16+ 15+ 14 + 13 + 12+ 11 = 81

This is not true for example for A = 3 and n = 3, in fact:

3B =271 (A- 1P+ A1+ Do+ Az + Agla1)=o =8+ T7+6+5=26

and:

B =214 (A= 1P+ A1+ Ao+ Az + Asfa)—2 =8+ T7+6+5+4=30



A™ in Binary Form as Sum of n! and 1:
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From the previous chapters we note, for the property of the Telescoping Sum that Power

of Integers can be written in a Binary Form, so as Sum of n! and 1:

X" X"
A" = | — | 4+ | — | = X" mod n! + Rest
n! n!

Then one can felt into mistakes that we have a new method to identify n-th Power via
their Class of Rest, but unfortunately, this is False, since in a finite interval of numbers

there are no number enough to describe an infinite set of other numbers, And I think can
be true just in case we make a test for the Rest are in the form 2™ we can always find in

the case n = 2.

X XA2 FLOOR  CEIL X Xn3 FLOOR  CEIL X xna FLOOR  CEIL X xn5 FLOOR CEIL X Xxn6 FLOOR
1 1 0 il 1 1 0 il 1 1 0 iff 1 1 0 1l 1 1 0
2 3 2 20 2 8 1 70 2 16 0 6 2 32 0 32 2 64 0
3 9 3 s| 3 27 4 23 3 81 3 78 3 243 2 241 3 729 1
4 16 8 8 4 64 10 54 4 256 10 26 4 1024 8 1016/ 4 4096 5
5 25 12 13 5 125 20 105, 5 625 26 599 5 3125 26 3099 5 15625 21
6 36 18 18 6 216 36 180 6 1296 54 1242 6 7776 64 7712 6 46656 64
7 49 24 5 7 343 57 286 7 2401 100 2301 7 16807 140 16667 7 117649 163
8 64 32 32 8 512 85 47 8 4096 170 3926 8 32768 273 32495/ 8 262144 364
9 81 40 41 9 729 121 608 9 6561 273 6288 9 59049 492 58557 9 531441 738
10 100 50 50 10 1000 166 834 10 10000 416 9584, 10 100000 833 99167 10 1000000 1388
1 121 60 61 11 1331 21 1110/ 11 14641 610 14031 11 161051 1342 159709 11 1771561 2460
12 144 72 72 12 1728 288 1440/ 12 20736 864 19872 12 248832 2073 246759 12 2985984 4147
13 169 84 85| 13 2197 366 1831 13 28561 1190 27371 13 371293 3004 368199 13 4826809 6703
14 196 98 98 14 2744 457 2287, 14 38416 1600 36816 14 537824 4481 533343 14 7529536 10457
15 225 112 13, 15 3375 562 2813 15 50625 2109 48516 15 759375 6328 753047 15 11390625 15820
16 256 128 128 16 4096 682 3414 16 65536 2730 62806 16 1048576 8738 1039838 16 16777216 23301
17 289 144 145 17 4913 818 4095 17 83521 3480 80041 17 1419857 11832 1408025 17 24137569 33524
18 324 162 162 18 5832 972 4860 18 104976 4374 100602 18 1889568 15746 1873822 18 34012224 47239
19 361 180 181 19 6859 1143 5716 19 130321 5430 124891 19 2476099 20634 2455465 19 47045881 65341
20 400 200 200 20 8000 1333 6667 20 160000 6666 153334| 20 3200000 26666 3173334 20 64000000 88888
21 441 220 21 2 9261 1543 7718 21 194481 8103 186378 21 4084101 34034 4050067 21 85766121 119119
22 484 242 242 22 10648 1774 8874, 22 234256 9760 224496 22 5153632 42946 5110686 22 113379904 157472
23 529 264 265 23 12167 2027 10140 23 279841 11660 268181 23 6436343 53636 6382707 23 148035889 205605
24 576 288 288 24 13824 2304 11520| 24 331776 13824 317952 24 7962624 66355 7896269 24 191102976 265420
25 625 312 313 25 15625 2604 13021 25 390625 16276 374349 25 9765625 81380 9684245 25 244140625 339084
26 676 338 338 26 17576 2929 14647 26 456976 19040 437936 26 11881376 99011 11782365 26 308915776 429049
7 14348907 119574 14229333 27 387420489 538084

365 27 19683 3280 16403 27 531441 22143 509298 2
28 784 392 392 28 21952 3658 18294 28 614656 25610 589046 2
20325/ 29 707281 29470 677811 2

27000 4500 22500/ 30 810000 33750 776250 3(
961 480 481 31 29791 4965 24826 31 923521 38480 885041 3

17210368 143419 17066949 28 481890304 669292
20511149 170926 20340223 29 594823321 826143
24300000 202500 24097500 30 729000000 1012500
28629151 238576 28390575 31 887503681 1232644

BEBR

31

32 1024 512 512 32 32768 5461 27307 32 1048576 43690 1004886 32 33554432 279620 33274812 32 1073741824 1491308
33 1089 544 545 33 35937 5989 29948 33 1185021 49413 1136508 33 39135393 326128 38809265 33 1291467969 1793705
34 1156 578 578 34 39304 6550 32754 34 1336336 55680 1280656 34 45435424 378628 45056796 34 1544804416 2145561
35 1225 612 613 35 42875 7145 35730 35 1500625 62526 1438099 35 52521875 437682 52084193 35 1838265625 2553146
36 1296 648 648 36 46656 7776 38880 36 1679616 69984 1609632 36 60466176 503884 59962292 36 2176782336 3023308

Unfortunately, as you
wide, but not enough to include the Set of all the Integers...

The question for the reader is: are just 2™ the problems ?

CEIL

728
4091
15604
46592
117486
261780
530703
998612
1769101
2981837
4820106
7519079
11374805
16753915
24104045
33964985
46980540
63911112
85647002
113222432
147830284
190837556
243801541
308486727
386882405
481221012
593997178
727987500
886271037
1072250516,
1289674264
1542658855
1835712479,
2173759028

X xA7

1 1
2 128
3 2187
4 16384
5 78125
6 279936
7 823543
8 2097152
9 4782969
10 10000000
11 19487171
12 35831808
13 62748517
14 105413504
15 170859375
16 268435456
17 410338673
18 612220032
19 893871739
20 1280000000
21 1801088541
22 2494357888
23 3404825447
24 4586471424
25 6103515625
26 8031810176
27 1.046E+10
28 1.3493E+10
29 1.725€+10
30 2.187E+10
31 2.7513E+10
32 3.436E+10
33 4.2618E+10
34 5.2523E+10
35 6.4339E+10
36 7.8364E+10

FLOOR

6817408
8456040
10421299
12765733
15548445

CEIL

128
2187
16381
78110
279881
823380
2096736
4782020
9998016
19483305
35824699
62736067
105392589
170825475
268382195
410257257
612098560
893694384
1279746032
1800731183
2493862976
3404149887
4585561410
6102304610
8030216563
10458277737
13490251344
17246453715
21865660715
27507155259
34352920960
42609986937
52512928845
64326531142
78348615651

can see not all the Rest are different, as we can espect since n! is
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X2
1

4

9
16
25
36
49
64
81
100
121
144
169
196
225
256
289
324
361
400
441
484
529
976
625
676
729
784
841
900
961
1024
1089
1156
1225
1296

0

2

4

8
12
18
24
32
40
50
60
72
84
98
112
128
144
162
180
200
220
242
264
288
312
338
364
392
420
450
480
512
544
978
612
648

Table 13: The Rest Modulo n! for X2, X3, X4
FLOOR REST

1

2

5

8
13
18
25
32
41
30
61
72
85
98
113
128
145
162
181
200
221
242
265
288
313
338
365
392
421
450
481
512
945
978
613
648

R RS R R CR

X3

1

8

27
64
125
216
343
012
729
1000
1331
1728
2197
2744
3375
4096
4913
5832
6859
8000
9261
10648
12167
13824
15625
17576
19683
21952
24389
27000
29791
32768
35937
39304
42875
46656

FLOOR

0

1

4

10
20
36
57
85
121
166
221
288
366
457
562
682
818
972
1143
1333
1543
1774
2027
2304
2604
2929
3280
3658
4064
4500
4965
5461
5989
6550
7145
7776

REST
1

7

23

54
105
180
286
427
608
834
1110
1440
1831
2287
2813
3414
4095
4860
5716
6667
7718
8874
10140
11520
13021
14647
16403
18294
20325
22500
24826
27307
29948
32754
35730
38880

@OO\]CDCH»&OJ[\DI—AN

X4

1

16

81

256
625
1296
2401
4096
6561
10000
14641
20736
28561
38416
50625
65536
83521
104976
130321
160000
194481
234256
279841
331776
390625
456976
531441
614656
707281
810000
923521
1048576
1185921
1336336
1500625
1679616

FLOOR
0

0

3

10

26

54
100
170
273
416
610
864
1190
1600
2109
2730
3480
4374
5430
6666
8103
9760
11660
13824
16276
19040
22143
25610
29470
33750
38480
43690
49413
55680
62526
69984

REST
1

16

78

246

999
1242
2301
3926
6288
9584
14031
19872
27371
36816
48516
62806
80041
100602
124891
153334
186378
224496
268181
317952
374349
437936
509298
589046
677811
776250
885041
1004886
1136508
1280656
1438099
1609632
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[

XO

1

32

243

1024
3125
7776
16807
32768
59049
100000
161051
248832
371293
537824
759375
1048576
1419857
1889568
2476099
3200000
4084101
5153632
6436343
7962624
9765625
11881376
14348907
17210368
20511149
24300000
28629151
33554432
39135393
45435424
52521875
60466176

Table 14: The Rest Modulo n! for X°, X

FLOOR

0

0

2

8

26

64

140
273
492
833
1342
2073
3094
4481
6328
8738
11832
15746
20634
26666
34034
42946
53636
66355
81380
99011
119574
143419
170926
202500
238576
279620
326128
378628
437682
503884

REST

1

32

241

1016
3099
7712
16667
32495
58557
99167
159709
246759
368199
533343
753047
1039838
1408025
1873822
2455465
3173334
4050067
5110686
6382707
7896269
9684245
11782365
14229333
17066949
20340223
24097500
28390575
33274812
38809265
45056796
52084193
59962292

X

0~ O Uik Wi -

XG

1

64

729

4096

15625
46656
117649
262144
531441
1000000
1771561
2985984
4826809
7529536
11390625
16777216
24137569
34012224
47045881
64000000
85766121
113379904
148035889
191102976
244140625
308915776
387420489
481890304
594823321
729000000
887503681
1073741824
1291467969
1544804416
1838265625
2176782336

FLOOR
0

0

1

5

21

64

163

364

738
1388
2460
4147
6703
10457
15820
23301
33524
47239
65341
88888
119119
157472
205605
265420
339084
429049
538084
669292
826143
1012500
1232644
1491308
1793705
2145561
2553146
3023308

REST

1

64

728

4091

15604
46592
117486
261780
530703
998612
1769101
2981837
4820106
7519079
11374805
16753915
24104045
33964985
46980540
63911112
85647002
113222432
147830284
190837556
243801541
308486727
386882405
481221012
593997178
727987500
886271037
1072250516
1289674264
1542658855
1835712479
2173759028

127
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Chapt.14: The Integer Derivative Formulas, for Y = X" curve

The Integer derivative function is not the same of the Classic One, in fact as we can imme-
diately see that on the table:

Relation between Following DELTA, respect to the CLASSIC DERIVATIVE

Delta 2 = Delta3 =
Deltal= |d/dx(Deltal)=| Deltal(x)- |d/dx(Delta?2)= Delta2(x)-
X 3xN2-3x+1 6x-3 Deltal(x-1) 6 Delta2(x-1)
0 0 0 0 0 0
. i} 3 4 6 i |
2 7 g 6 6 6
3 19 15 12 6 6
4 37 21 18 6 6
5 61 27 24 6 6

We cannot apply the classic derivation Rule to pass from the integer First derivative Deltal
(01) to to the Second derivative Delta2 (02) using the Known Derivation Rules. So:

61 =3X%—3X +1 and L (§1) = 6z — 3 # 02

So we need to investigate in such difference to better understand how the Integer deriva-
tive behave respect to X

Starting to see, as an example, what happens for n = 3 we can see that for the First Dif-
ference (the initial difference, me and Mr. Nexus, forgot to consider) we cannot apply the
Same Rule of the Rest of the Column. The number of the initial "strange" difference, seems
not obeying at any distribution law, Depends on 3 variables:

- the n-th Degree of Y = X" we are considering
- the n-th Delta we are considering (91, §2, d3... etc...)

- the n-th Row we are considering (X=1, X=2.... etc....

So for example for n = 3:

61 =3X? — 3X + 1 (do not depends by other factors than X)
02, =1 - 02, = 6(X —1)

And for Delta3:

03, =1-063; =5- 035, =6

As we can see the things becomes more complicate rising n since there will be more Inte-
ger Derivative Initial Gnomons:
So for example for n = 4:



Delta 2 = Delta 3 = Delta4 =
Deltal(x)- | d/dx( |Delta2(x)-| d/dx( | Delta3(x)-
Deltal= d/dx ( Delta 1) | Deltal(x- | Delta 2) = | Delta2(x- | Delta 3) = | Delta3(x-
X 4xN3-6x"2+4x-1| = 12x72-12x+4 1) 24x-12 1) 24 1)
0 0 0 0 0 0 0 0
1 1 4 1 12 1 24 1
2 15 28 14 36 13 24 12
3 65 76 50 60 36 24 23
4 175 148 110 84 60 24 24
5 369 244 194 108 84 24 24
6 671 364 302 132 108 24 24
7 1105 508 434 156 132 24 24
8 1695 676 590 180 156 24 24
9 2465 868 770 204 180 24 24
10 3439 1084 974 228 204 24 24
11 4641 1324 1202 252 228 24 24

01 =4X3 —6X% +4X — 1 (do not depend by other factors than X)

620 =1- 625, =12(X — 1)2+2

And for Delta3:

031 =1-031=5-033-. =6

For the complete sequence see: http://oeis.org/A101104

129
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Chapt.15: The Ghost Nexus Numbers, and the Ghost Composite
Develop

What is interesting is that the new "information", once read by Columns, becomes the co-
efficient of a New Composite Develop:

In case n= 3 they are the equals of the Newton’s like develop for a "composite" power:

Deltab:
13-3-1
are the coefficient for:
22 +322-32r—-1=0
or:
(z—1)*(2*+42+1)=0

In case n= Even they are the equals of the Newtons develop for what we can call a "Com-
posite Non Perfect Power":

For example n—=4

Delta7
19-10-1091
is:

2+ 92 —102° — 1022+ 92 +1=0

or.

(z—12*(x+ 1) * (22 + 10z +1) =0
Interesting is that this is in relation with:

Delta6

1100-10-1
that is:

2t +102* — 102 —1=0

or

(z—1D(z+1)(2* + 102 +1) =0
And of course also with

Delta8

18-19019-8-1
or:
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(z—1)*x+1)(2* + 10z +1) =0

. and infinite more new ones we have no time here to better investigate nor define...

The Last Linear Integer derivative

What is also interesting is to see that the equation for The Last Linear Integer derivative

yt is:

yb =nlz —n!/2

This, of course will have a big relevance into Fermat the last Theorem proof and in other
similar problems.
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Chapt.16: Lebesgue Integer/Rational Integration via Sum and Step
Sum

All T did for my modified Riemann’s Sum till the Integral can be adjusted for what I call
my Lebesgue’s (Like) Sum and Integral.

Remembering Lebesgue Sum can uses Longitudinal Bars instead of Vertical ones (plus
other properties that at the moment we will not investigate), we have just to search for
the proper Horizontal Gnomon I'll call M, ,,.

If you remember I've already said that once we use Rational for n > 2 we lose invertible
property, so there is no way to find a non recursive dependence of the new Y — Gnomons
from X and so the new Gnomons function M, , is no longer a monotone rising function:
that means that for n > 2 the Gnomons function M, we saw so far, is not invertible.

Taking a look to the picture, remembering what we said in the previous chapters, it’s clear
we can square the area below the derivative, in the Lebesgue’s direction, using a recursive
path for the Height of the new M, , Gnomon:

A
A" = (Miyx — Miyx1)(A+1 - X))

r=1

where:

M) - is the well known Complicate Integer Modulus calculated for each single value of =
M)je—1 - is the Complicate Integer Modulus calculated for the single value of x — 1

The Lebesgue Integer / Rational Sum can also work in the Rational REMEMBERING to
put x = X/k :

A
A" = 3" (Misje — Minwyje—1)(AK + 1 — Kz))

z=1/K
where:

M 1o - is the well known Complicate Rational Modulus (K dependent) calculated for the
single value of x

M i)je—1 - is the well known Complicate Rational Modulus (K dependent) calculated for
the single value of x — 1

And of course is possible to go to the limit, having the Integral:

A A
A" = lim Z ((M(n,k:)|a: — M(n,k)|a:—1>(AK -1+ KZE)) = / nr" Ydr
0

K—oo
z=1/K
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Here in the graph what happens in the integers for n = 3...

As we can see we do not square using a linear Delta2y, where Delta2y is the difference be-
tween two following Gnomons M|, and M,

I hope will not soo hard to prove there is no other way to do that... since the Integer /
Rational derivative is a non invertible function.

7 T \\

~ AY Powers as Lebesgue sum

via ComplicateModulus

125 A3

61 ——
125=5+24+36+36+24l / 637 b
37
/é
(5-3)*(37-19)= 36
19

Ns-zmg-?): 36&
7 P

/% (5-1)/(7-1)= 24 /7 Pl
3 4 A=5

>
X

\ all rights reserved Maruelli /f

Here an example of Lebesgue Integer Integration for n=3
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A
A= (32" =3z + 1)], — (32" = 3z + 1)|,—1)(A+ 1 — )

r=1

We can immediately see that just in case n = 2, with a linear derivative we have (If we
exclude the first Gnomon) Both LINEAR M,, and M, ,, Gnomons

The concerning on this let me found a new family of triangles for A™. you can find two ex-
amples on: www.oeis.org

http://oeis.org/A276158
http://oeis.org/A276189

Here an example for n =2, n =3 and n = 4:

|Maruelli-Lebesgue TRIANGLE ~ n=2

A a0 a1l a2 s3 s4 S5 6 7 8 9 10 A2
1 1 1
2 2 2 4
3 3 4 2 9
4 4 6 4 2 16
5 5 8 6 4 2 25
13 6 10 8 13 4 2 36
7 7 12 10 8 6 4 2 a9
8 8 14 12 10 8 6 4 2 64
9 9 16 14 12 10 8 6 4 2 81

10 10 18 16 14 1 10 8 6 2 100
11 11 20 18 16 14 12 10 8 6 4 2 1

Maruelli-Lebesgue TRIANGLE  n=3

A a0 a_l a2 s3 sa S5 3 7 8 9 10 AN3
1 1 1
2 2 6 8
3 3 12 12 27
4 1 18 24 18 64
5 5 24 36 36 24 125
6 6 30 48 54 48 30 216
7 7 36 60 72 72 60 36 343
8 8 a2 72 90 96 90 72 a2 512
9 9 a8 84 108 120 120 108 84 a8 729
10 10 54 9% 126 144 150 144 126 9% 54 1000
1 i 60 108 144 168 180 180 168 144 108 60 1331

Maruelli-Lebesgue TRIANGLE n=4

A a0 a_l a2 53 54 S5 3 7 s 9 10 ANG
1 1 1

2 2 14 16

3 3 28 50 81
4 1 42 100 110 256
5 5 56 150 220 194 625
6 6 70 200 330 388 302 1296
7 7 84 250 440 582 604 434 2401
8 8 98 300 550 776 906 868 590 4096
9 9 112 350 660 776 1208 1302 920 770 6561
10 10 126 400 770 970 1510 1736 1250 1540 974 10000
11 1 140 450 880 1164 1812 2170 1580 2310 1948 1202 14641

Powers as a Lebesgue Sum of integers. For Example 22 =8 =2 +6; 3 =8 =3 + 12 + 12
etc...


http://oeis.org/A276158
http://oeis.org/A276189

Here the A276158 sequence with the generating formula:

A276158

Triangle read by rows: T(n,k) = 6*k*(n+ 1 -k) for 0 <k <=n; fork=0, T(n,0)=n+ 1. 1

1, 2, 6, 3, 12, 12, 4, 18, 24, 18, 5, 24, 36, 36, 24, &, 30, 48, 54, 48, 30, 7,
36, 60, 72, 72, 60, 36, 8, 42, 72, 90, 96, 90, 72, 42, 9, 48, 84, 108, 120,

120, 108,

84, 48, 10, 54, 96, 126, 144, 150, 144, 126, 96, 54 (list;table; graph;refs;

listen; history:; text; internal format)

OFFSET
COMMENTS

LINKS
FORMULA

EXAMPLE

MAPLE

0,2

The row sums of the triangle provide the positive terms of A000578.

Similar triangles can be generated by the formula P(n,k,m) =
(Q(k+1,m)-Q(k,m))* (n+1-k), where Q(i,r) = i*r-(i-1)"r, 0 < k <=
n, and P(n,0,m) = n+l. T(n,k) is the case m=3, that is T(n,k) =
P(n,k,3).

Table of n, a(n) for n=0..54.

Sum_{k=0..n} T(n,k) = T(n,0)"3 = A000578 (n+1).

G.f. as triangle: (l+4*x*y + x"2*y~2)/((1-x)"2*(1l-x*y)~2). - Robert
Israel, Aug 31 2016

T(n,n-h) = (h+1)*A008458 (n-h) for 0 <= h <= n. Therefore, the main
diagonal of the triangle is A008458. - Bruno Berselli, Aug 31
2016

Triangle starts:

~

N
~

12, 12:

24, 18;

36, 36, 24;

30, 48, 54, 48, 30;

60, 72, 72, 60, 36

42, 72, 90, 96, 90, 72, A42;

W doH U WN
N =
[I=es)

ok WP o

W
(22}

T:= (n,; k} —» "1if’ (k=0; n+l; 6*k*(n+l—-k)):
seq(seq(T(n, k), k=0..n), n=0..30); # Robert Israel, Aug 31 2016

MATHEMATICA Table[If[k == 0, n + 1, 6 k (n + 1 - k)], {n, 0, 10}, {k, 0, n}] //

PROG

CROSSREFS

KEYWORD
AUTHOR

Flatten (* Michael De Vlieger, Aug 25 2016 *)

(PARI) T(n, k) = if (k==0, n+l1, 6*k*(n+l1-k));

tabl (nn) = for (n=0, nn, for (k=0, n, printl(T(n, k), ", "))
print); \\ Michel Marcus, Aug 25 2016

(MAGMA) [IsZero (k) select n+l else 6*k*(n+l-k): k in [0..n], n in
[0..1011; // Bruno Berselli, Aug 31 2016

(MAGMA) /* As triangle (see the second comment): */ m:=3;
Q:=func<i, r | i”r=-(i-1)"r>; P:=func<n, k, m | IsZero (k) select
n+l else (Q(k+1, m)-Q(k, m))*(n+l1-k)>; [[P(n, k, m): k in
[0..n]]: n in [0..10]1]; // Bruno Berselli, Aug 31 2016

Cf. A000578, A008458, A276189.

Sequence in context: A064736 A243618 A063929 * A092393 A207901
A054619

Adjacent sequences: A276155 A276156 A276157 * A276159 A276160
A276161

nonn, tabl
Stefanoc Maruelli, Aug 22 2016

To have a(m)™ just sum all the terms of a line. For example to have 73:
7% =7+ 36460+ 72+ 72+ 60 + 36 = 343

135
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The general formula for the M,,, y Gnomons is:

M,y = (My]y — Mp|o1)(A+1— 1))
So the general Power of an integer A can be written as:

A" = Z(Mn‘m - Mn’xfl)(A +1-— Q}))

r=1

We can immediately see that just in case n = 2, with a linear derivative we have Both
LINEAR M, and M, , Gnomons, so in this case only, we can invert the Integer / Rational
derivative.

As shown for the Nexus Numbers, also here the table can be continued, showing its Sym-
metrical Behavior:

Maruelli-Lebesgue TRIANGLE n=2

A a0 a1l a2 s3 sa 55 6 7 8 9 10 An2
0 0 -2 -4 -6 -8 -10 12 -14 -16 18 -20
1 1 0 -2 -4 6 -8 -10 12 -14 16 -18
2 2 2 0 -2 -4 -6 -8 10 -12 -14 -16 4
3 3 4 2 0 2 -4 6 -8 -10 12 -14 9
4 4 6 4 2 0 2 -4 6 -8 -10 A7 16
5 5 8 6 4 2 0 2 -4 6 8 -10 25
6 6 10 8 6 4 2 0 -2 -4 ¥ -8 36
7 7 12 10 8 6 4 2 0 -2 -4 -6 49
8 8 14 12 10 8 6 4 2 0 2 -4 64
9 9 16 14 12 10 8 6 4 2 0 2 81
10 10 18 16 14 12 10 8 6 4 2 0 100
11 11 20 18 16 14 12 10 8 6 4 2 121
12 12 22 20 18 16 14 12 10 8 6 4 144

Maruelli-Lebesgue TRIANGLE n=3

A a0 a1l a2 s3 sa S5 6 7 8 9 10 AN3
0 0 -6 24 54 -9 -150 -216 294 -384 -486 -600
1 1 0 12 -36 72 -120 -180 -252 -336 -432 540
2 2 6 0 -18 -48 -90 -144 -210 -288 -378 -480 8
3 3 12 12 0 -24 -60 -108 -168 -240 324 -420 27
4 4 18 24 18 0 -30 72 -126 -192 -270 -360 64
5 5 24 36 36 24 0 -36 -84 -144 -216 -300 125
6 6 30 18 54 43 30 0 42 96 -162 -240 216
7 7 36 60 72 72 60 36 0 -48 -108 -180 343
8 8 a2 72 90 9% 90 72 42 0 54 -120 512
9 9 a8 84 108 120 120 108 84 a3 0 -60 729
10 10 54 9% 126 144 150 144 126 % 54 0 1000
11 11 60 108 144 168 180 180 168 144 108 60 0 1331
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While it is clear that for a Line the Balancing Point is the same of the Medium Point both
on x and in y: BP, = MP; = (%;1/2,Yi,1/2

We will see in the Vol.2 what happen if we try to fix different conditions (like Fermat’s
one) on a derivative that is a Line, or a Curve (n > 2).

I'll follow 2 ways: both will look in how BP is geometrically fixed, the first one involve
simple concerning on the relative position of BP respect to known things: the Medium (or
Center) Point M P, the second one will show that we can pack X,

We can immediately make some concerning on:

- we know from Telescoping Sum Property that for any derivative (also the following) the
Exceeding Area A1 will equate the Missing one A~, without going out of Integer numbers
and Proportional Areas,

- but once we ask how much the value of such areas is the only way to calculate them is to
go infinitesimal and make the integral.

And this is due to what I call the Infinite Descent, that is not what Fermat discover so
what is actually known under that name, but there is no way to better call this infinite
process of approaching to an existing limit:

if we try to change the scale of the picture zooming in, we will see that still if we continu-
ous to zoom in, so we keep X, closer and closer to X;, the condition that fix X,, rest an
inequality that told us just » > ¢. But since we know X, exist and it can be rise at the
limit after infinite zooming in, than we prove X,, for all the curved derivative is an Irra-
tional Value.

This is in fact the process known as Dedekind Cut. It sound like an Axiom, but it is now
well proved.

All the work of the Vol.2 will be dedicated to problems involving powers, and the new way
offered by this new method of investigating powers via Complicate Modulus.
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Chapt. 17: What PARTIAL SUMs are

We have not all the knowledge to produce a New more general type of Summations ['ve
called PARTIAL SUMs or Magic Sums since the results will often be an unpredictable
surprise.

Partial Sums (here defined in their first basic version) are defined as:

Sums of values coming from a CARRIER FUNCTION, calculated for a value
called MODULATOR.

The Carrier Function can be a continuous function, the MODULATOR is the set I of
the point on witch we calculate the Modulator Function, so the internal Terms of the Sum.

As shown in the previous chapters, I extent the concept of a classic SUM with Integers In-
dex, as much as possible, to work with Rational and Irrationals too, but there is a big free-
dom in creating the elements that will builds the set of the Index I.

I hope you try with on a simple .XLS file how powerful will be this "new" instrument.

The basic concept is to create a Sum of the type:

A= f(x)

z€l

Where:

- The elements of the set I are the x € D, where D is a Definite Domain, be it under the
previous rules N, Qor R, or one of their Sub Set, and it is used instead of the classic inte-
ger Index ¢

- The set I is build using a known Function, called MODULATOR here for example z =
sin(x/10)

- The internal term in the Sum is called: CARRIER and will be calculated at the values
coming from the Modulator.

- The result will be very interesting because sometimes unexpected.
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PARTIAL SUM produces MAGIC EFFECTS:

I present here just few example of how strange will be the result of this PARTIAL SUM,
suggesting you to create your own example and also try to imagine the connection for chaos
theory and Qbit behavior...

Example 1:

As CARRIER here we put the "Gnomon" (22 — 1) (I remember it is the Gnomon of the
Square function y = z?)

As MODULATOR here we keep: = = sin(x/10), where x = 1,2,3.....0 € N*

So we will see what will happen if we Sum the value coming from the sin of a Rational an-
gles: 0.1, 0.2,....x/10.

A [} € D E F 6 H 1 ] K L M N o 3 Q R s
1ix x=sin(X)  F{x)=2x-1 [SUM
2 1] 0.1] 0.099833417 -0.800333167| -0.80033 s
3 2| 0.2| 0039469503 -0.921060994| -1.72139
a 3 0.3| 0.087332193 -0.825335615| -2.54673
5 4 0.4] 0151646645 -0.696706709| -3.24344
6 5 0.5 0229848847 -0.540302306| -3.78374 ¥
7 6| 0.6 0318821123 -0.362357754| -4.1461
2 7| 0.7 0.415016423 -0.169967143| -4.31606 5 ]
9 8| 0.8| 0514599761  0.029199522| -4.28686
10 9 0.9] 0613601047  0.227202095| -4.05966
1 10| 1| 0.708073418  0.416146837| -3.64352| 5
12 11| 11| 0794250559  0.588501117| -3.05501]
13 12| 12| 0.868696858 0.737393716| -2.31762|
14 13 13| 0.928444377  0.856888753| -1.46073] -
15 14| 14| 057111117  0.542322341| -0.51851]
16 15 15| 0.994996248  0.989992497| 0.471483]
17 16| 16| 0.999147388  0.998294776| 1.465778|
18 17] 17| 0.983399096 0.966798193| 2.436576| &2
19 18| 1.8| 0.948379208  0.896758416| 3.333335|
20 15 19| 0.895483856  0.790967712| 4.124302|
2 20| 2| 082682181 0.653643621| 4.777946| =
2 2| 21| 0745130411  0.450260821| 5.268207|
23 2| 22| 0653666435  0.30733287| 5.57554|
2 P} 23| 0.556076263 0.112152527| 5.687692| -
25 24| 24| 0456250508 -0.087498983| 5.600193]
2% 2 25| 0.358168907 -0.283662185| 5.316531]
5w s oame ossen s Partial SUM: Modulator: sin(X/10)
28 27| 27| 0.182653562 -0.634692876| 4.213321
25 28| 2.8| 0.112217061 -0.775565879| 3437756 C 11 (2 _1)
30 29| 29| 0.057240242 -0.885519517| 2.552236| arrier: X
31 30| 3| 0.019914857 -0.960170287| 1.592066|
32 31| 31| 0.001728951 -0.996542097| 0.595524| D
33 32| 3.2| 0.003407541 -0.993184919| -0.39766| (C) Stefano Maruelll

In the picture the (interpolated) Carrier in Red and in Blue the (interpolated) result of
the Sum.
One can expect that the result of the Sum will diverge but, vice versa it holds bounded.
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Example 2:
CARRIER = 2z — 1

MODULATOR = a collection of Rational Value given simply dividing by 50 the set of x €
N*, than applying the TAN function.

Again not so predictable graph will appears.

4 A B c ) 3 F ¢ | H ] 3 3 (Y] N o P | a R s T v [ v w x
1x x=tan(x/50) F)=21  SUM
2 1 002 0020002667 -0.959994666 -0.95999
B 2 004 0040021347 0919957206 -Ls7995 | 1% T
4 3 006 0060072104 -0.879855792 -2.75981
s 4 008 008017105 -0.839657791 -3.59947
6 5 0.1 0100334672 -0.799230656 -4.3988 oo N LL}\M] ‘
[ 6 012 0120579337 -0.758841325 -5.15764 A
= 7 014 0140921895 -0.71815621 -5.87579
El 8 016 0161373461 -0.677241079 -6.55303
10 9 018 0181969529 -0.636060%42 -7.1891 | (oo
11 10 02 020271003 -0.594579929 -7.78368
12 1 022 022361922 -0.552761157 -8.33644
13 12 020 0204716703 -0.510566595  -8.847
1 13 026 0266021562 -0.467956917 -9314% | 4000
15 14 028 0287554326 -0.424891349 -9.73985
16 5 03 030933625 0381327501 -10.1212
17 16 032 033138305 -0.33722119 104584
18 17 034 0353736678 -0.292526244 -10.7509 2000
15 18 036 0376402852 -0.247194297 -10.9981 —
20 19 038 0399412721 -0.201174557 -111993 )
2 w04 cezmams 1sensse: 113537 | | L5 | a1
2 21 042 0446572546 -0.106854907 -11.4606 o 4 1 " — 4 +—— | I
3 2 044 0470780527 -0.058438345 -11519 0 |z w0 e 50 |t 120 190
2 23 045 049508763 -0.009102462 -11.5281
b5 24 048 0520610844 0.041221688 -11.4869 L
2 > 05 054630249  0.09260498 -11.3943 2000 } }
27 26 052 05725183 0145123661 -11.2492
25 27 054 0599429623 0.198859245 -11.0503
2 28 056 06209535  0.25389907 -10.796%
30 2 058 0655168449 0310336898 -10.4861 #4000
32 31 062 071309007 0427818013 -9.68997
E) 32 064 0744543822 0483087644 -9.20088
1 33 066 0776104913 0.552209826 -8.64867 sl
3 3 068 0808661375 061732275 -8.03135
36 35 07 084228838 0684576761 -7.34677
37 35 072 08770673 07541358 -6.59264
38 37 078 0313089533 0826175067 -5.76685 | o
3 38 076 0950451461 0900902921 -4.86555
40 39 078 0989261537 0978523074 -3.88703
a1 0 08 1029638557 1059277114 -2.82775
2 41 082 1071713723 1143427485 -1.68433

Example 3:

.

MODULATOR = a collection of Rational Value x = /10 with z € N,
Al A ] c [ 4 F [ [ [ i [ S [ ] [ P a R
1.x x=gn(X}*r  Flx)= -1 SUM r

] 12

2 1 0.1 BSISSISTES  0239071529) 0239072 —taral
3 | 0.2 0rWI5EHI  -0.408082062) C4ICHET ——log {Seriel)
a 3| 0.3 0AXMFITS  -0,154251a5) 027678
5 4 04 DEIME031  0,666938062) 0,343676]
L] 5| 0.5 0017516585 -0,964966028) 002129
7 L] a6 O9TEES 095241298 05011N
] 7 07 0183340158 -0,833315203) 0,797E04)
2 & 0.8 0555153622 0,110387244) DA0S151
1 3 09 07M0MGHE  04A80TIGLG! 0835265
1 10/ 1 0085840864 0862318872 -0,00808
12 1 21 B 3| 0,393367,
13 1z 12 0091909515 -0,814180971) 0178785
14 13 1.3 nEEISasEES  0,36729133) 0,54807T)
15 14 14 05306787 0157813574 0,743891
16 13 15 0150374597 -0,659050806 004461
17 16| 16 OCETEIA6S6 0975629013 10E026%
18 17| LY 00300MM  -0,537954752) 0082274
13 15 L8 079230005 0558460069 0,6307M
) 13| 1.9 0466346571 -0,066006858) 0614428
n 20 3 BISGANEISD -0 ASTIETGTS| 0,127M
2 21 2.1 0341938737 0833877473 L0LINRT| d
n 2] 22 0001957815 -0,996085171| 0,005032; i
Fol Fi L3 OBATTL  07ETEA5M4I| O802TH
25 24 24 D3ITIONMT  -0,3ISTEII06 0A4TEMAT| | s
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Example 4:
CARRIER = (22 — 1)

MODULATOR = a collection of Rational Value x = /100 with z € N,
than applying the function: STN(z)?

Here seems that with the interpolation of the value don’t change lot the known SIN be-

havior.

A L c (] no| L] g) K L L N o P Q R s T u v w X Y e AA
l1 x  xpoo in(n2
2 1 001 0.002497917 -0 »
S 2 oe oo
S5 om e
S| 1 o comens
s 5 oo ooumns
1o e oo
s 7 oo ammmee o
S| 5 om o
B 5 o oo
W w oo
u  n o omames
5 2 on ousms
U b o o o
5 n o ossowes
s om o
¥ 3 o osuen
W o osmmn
5w o ossenow
2 » o omeum
A »  oa omeomas
2 n on ommueo
3 2 om omees
u  n om owwwn
B n om omees
% » ox omemem
¥ n om oo
% 7 0w osmweon
5 » om o
5 »  om oa N
5 % os omemem
B 5 on omewmn
SR om omuns (s
u 5 on omme
S B o oo
% 3 om ommm
3 % om ouem .
N o e (C) Stefano Maruelli
5 n o omsuns —
@ w0 os osmem Partial SUM - Natural as Input, Sin(x)*2 as Modulator, 2x-1 as Carrier
@ 4 on omaen oses e

Example 5:
CARRIER — (22 — 1)

MODULATOR = a collection of Rational Value given simply dividing by 100 each Prime
Numbers only, so x = mi)/100

than applying the function: STN(z)% "Random" or "Noise" behavior here is well expected.

e T e T S ™ 2 O~ 0 S 0 32 0 ™
LB b0 xesnppe F-za sum

277 oo oowsesrt ossoses7] 055007

3 3| 0.03 0.022331755 -0.955336489| -1.9354| 0,
s s 005 ocetns sl 2em
5.7 007 o ossasns| ss7rss

6 u o oo osssssern| 4o w
7w ors ossersosss ossmssszs|

s 0w ossumur o 1706

) 19) 0.19 0.661644783 0.323289567| -3.84679| l
10 2 oz osmuem osscrsen| s

1 2 oz osssemess osmsssies| 22055
1w oa ossssersrs osserssis| 12100
5w o oswuosonts ossioass| 03623
@] om ommuns osuss] oz

5 a3 os ojoosssss ocomsira| 0513304

5 @] 0w osoeoen oowssssss o)

1 s os oxsim ossismisse| 0o

15 os oosessers ossmarsasi| osses

15 e oe ooossesrer osssasease| o3

% o oe oososirs oswsssies| 27551

2 71| 071 0157726667 -0.684545666| -2.43836)
2 7| 073 023691241 0526077517 -3.96444)

2 0.79 0523001063 0.046002126 -3.91843|

2 83 083 0715638422 0.431376845| -3.48706|

2 8 089 0932717605 0.865435208 -2.62162

) 97 097 098118284 096236488 -1.65926|

2 101 101 0 0.78056818| -0.87863)

) 103 103 0820413209 0.640826418| -0.23726]

2 107) 107 0.645648541 0.291289282| 0.053427]

0 103|109 047710426 1

£ 13| 113 0350127325 -0.299745343| -0.15089) .
2 127 127 0.00457564 -0.991084872| -1.14197)

£ 131 131 0.069516652 -0.860966616| -2.00294|

3 137 137 0288312728 -0.42337a544| -2.426%)

£ 19| 139 0382525091 -0.234949815| -2.66127]

£ w149 0. 0690972181/ -1.97029)

7 151 151 0910806547 0.520813094| -1.14548]

£ 157 157 0999934147 0.999965293| -0.14951

£ 163 163 0914902899 0.529805798| 0.680294)

a0 167 167 0.773492981 0.546985963| 1.22723]

a2 175|179 0.208977874 -0.552044252| 0.623997]

(C) Stefano Maruelli

Partial SUM - Primes as Input, Sin(x)"2 as Modulator, 2x-1 as Carrier
= Divergent Noise Effect
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Example 6:
CARRIER = (22 — 1)

MODULATOR = is a collection of Rational Value given simply dividing by 100 the set of

Prime Numbers only, = m)/100

than applying the function: = = (zLn(z)). A sort of Filter effect is shown.

A B & D 3
1 pi Pi/100  x=sin(X)"2 F(x)=X(LN[X) SUM

2 2 0.02 0009966711 -0.002162678 -0.002162678
3 3 0.03 0.022331755 -0.005874079 -0.008036757
a 5 0.05 0.061208719 -0.021911391 -0.029948149
5 7 0.07 0.117578906 -0.054926843 -0.084874992
6 1 0.1 0.273201939 -0.210553113 -0.295428105
7 13 0.13 0.366250586 -0.364632522 -0.660060626
8 17 0.17 0564422247 -0.936833883  -1.64689451
9 19 0.19 0.661644783 -1.601942894 -3.248837404
10 2 0.23 0833138011 -4.563740117 -7.81257752
1 29 0.29 0985479083 -67.37223142 -75.18480894
12 3L 031 0.999567575 -2311.040658 -2386.225467
13 37 0.37 0524050016 -11.63845283 -2397.923919
1 a1 0.41 0787411973 -3.294559839 -2401.218479
15 a3 0.43 0.700359586 -1.966838496 -2403.185318
16 a7 0.47 0.506194332 -0.743490872 -2403.928809
17 53 0.53 0.222812832 -0.148401087 -2404.07721
18 59 059 0036260785 -0.01093174 -2404.088141
19 61 0.61 0.008365781 -0.001748844  -2404.08989
20 67 0.67 0042808426 -0.013585576 -2404.103476
21 n 071 0157726667 -0.085401145 -2404.188877
2 73 0.73 0.236961241 -0.164572567 -2404.35345
23 79 0.79 0523001063 -0.806886503 -2405.160336
2 83 0.83 0715688422 -2.133510415 -2407.299847
25 89 0.89 0332717605 -13.33095664 -2420.650803
26 ¥ 0.97 0.98118244 -51.64970788 -2472.340511
27 101 1.01 0.89028403 -7.660686293 -2420.001197
28 103 1.03 0.820413209 -4.144607278 -2484.145805
29 107 1.07 0.645644641 -1.475738879 -2485.621544
30 109 1.09 0.547714426 -0.309822739 -2486.531366
31 13 113 0.350127328 -0.333626688 -2486.854993
32 127 1.27 0.004457564 -0.000823463 -2486.865816
33 131 131 0.069516692 -0.026073436  -2486.89189
£ 137 137 0.388312728 -0.231816772 -2487.123707
35 139 139 0.382525091 -0.398065143 -2487.521772
E‘ 149 149 0.84548609 -5.037345964 -2492.559118
37 151 151 0.910406547 -9.69920645 -2502.258324
38 157 157 0.999984147 -63076.74834 -65579.00716
39 163 163 0.914902899 -10.28705033 -65589.29421
40 167 167 0.773492981 -3.011590672 -65592.30581
2 173 173 0.48938059 -0.684817347 -65592.99062
42 179 179 0.208977874 -0.133487246 -65593.12411

26408

-2E409

-4E+09

-8E+09

-BE+09

-1E+10

-L2EH10

-L4E+H10

-16E+10

10000 200000 300000 400000

— (c) Stefano Maruelli

Partial SUM - Prime as Input, Sin(x)*2 as Modulator,
x/Ln(x) as Carrier = FILTER LIKE EFFECT

As you can see the Square Gnomon Carrier (2¢ — 1) produce lot of interesting behavior
once in relation with trigonometric functions we know depends on the square function. I
hope all this will be interesting for those are studying the Qbit behavior since it can prob-
ably give some information on how to find information in what actually is supposed chaos.
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Chapt. 18: Squaring Known Curves with Gnomons:

Gnomons can be used to square, with approximation, several curves.

All is born considering the telescoping sum property for Y = X" derivative, and in that
case it don’t care if you stretch the scale of x, it means how far is 1 from 0 in the z, re-
spect to how far is 1 form 0 in .

As shown in the first chapters, nothing change in the result of the Summation (till the in-
tegral) if you move step 1 or step 1/K or dz, don’t care how wide are Gnomons and for so
you can make the variable exchange to x = X/K to square the curve Y’ = n X" with the
width you prefer / need.

While in general for other curves this will not happen and the Integral is littlest / big-
ger than the Gnomons area depending witch value we choose for the Integer / Rational
Height. Here T present few example to show how interesting is this research for math and
physics since it show some interesting result of different ways to measuring the same un-
measurable things.

1) Gnomons over Hyperbole

If you try to cover the 1st quadrant Hyperbole’s area, so the area bellow Y = 1/X curve,
with Gnomons given by Y = 1/|z], you can see that Gnomon’s Area is bigger than the
one bellow the Y = 1/X curve, due to the obvious fact that it is a continuous sinking
function that do not have the same properties of the Parabolas.

If we keep the Base of the Gnomons equal to 1, the difference between the area bellow the
curve and the one of the Gnomons is the well known Euler-Mascheroni constant:

’anli_{go<—lnn+kZ;%>:/loo(L—;J—i) . 3)
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Now we make here the process I've already shown for parabolas, to pass from Sum to Inte-
gral, so you will change + = X/K in the Sum (adjusting the limit as shown in my trick),
than you will see that the area bellow your Gnomons decreases rising K, till you've at the
limit for K — oo exactly the area bellow Y = 1/X curve.

So in other terms Y = 1/X derivative is characterized by v, = 0

Where ~, is a new more general value (and not just Eulero’s constant) representing the
goodness of the approximation.

A 5 c b E F 5 il 0 1 [3 L ™ N o B a R s T U v w X

1 v v

2 Yx /intl) 3/int(3x) 12

s 1 1 1

s 101 0990099 1

s 102 0980392

s 103 0970874

7 104 0961538

s 105 0952381
106 0943396

10 107 0934579
1 108 0925926
12 109 0917431
13 11 0909091
1a 111 0900901
15 112 0892857
16 113 0884956
7 114 0877193
18 115 0869565
19 116 0852089
20 117 0854701
21 118 0847458

- |

22 113 0840336
2 12 0833333
24 121 0826446
25 122 0819672
26 123 0813008
27 124 0806452
28 125 08
29 126 0793651
30 127 0787402
51 128 078125
52 129 0775198
£ 13 0769231

32| 131 076339
s 13 ore : A\ —

36 133 075188 1 N i
37 134 0746269 075 Ay

38 135 0740741 075 \N| V=3/lint(3x))
39| 136 0735298 075 |

40 137 0729927 075, ~N

a1 138 0724638 o7rs  |°2 e —|

a2 132 0719424 075 |

a7 144 0694444
a5 145 0689655
s 145 0584932
50 147 0680272 1 075

51 s 0675676 1 o
W 4 v W[ Fogiol ”Fogio2 | Foglio3 /¥J L
Pronto | 3 |

Rising K the area of the Gnomons go closer and closer to the one of y = 1/z. In the ex-
ample K=1 (the difference between the areas correspond to the known ~) and K=3 (that
produce a new 7, or v.x), and for K — oo the two areas are equal and 7, = 0).

So 7, is a new toy, and several, more deep, concerning will follows.

Once again we can chose Upper Gnomons (as in the example), or Lower Gnomons and see
that at the limit for K — oo are both equal.

What is already known and clear is that the precision of the measure depends on the Right
precision of the instrument we use, so depends on witch K we choose, but a bigger K is
not an insurance of a better measure.

This will be more clear if we compare the result of the PC error just in case we Sum ex-
actly the areas of the Gnomons given by the Integral, having for example base a fraction
of e. Still if e is an approximated value, than the Integral is not precise too, cutting it in
several columns of are equal to the approximated integral area, the Sum is not affected by
a significant error in term of PC digits: in fact the result is the same for the whole inte-
gral, and for the whole sum of columns, independently from how many (1, 10, 10 or 1000)
are them. Probably to see some significant digit we have to rise lot the number of columns,
while for the approximated Rational Gnomons the error rises/fells lot.

Here one example using K=10, 100, 1000. No difference from Log(P) and the Sum of 10,



CHECK FOR DIFFERENT PRECISION IN MEASURING THE INTEGRAL AS INTEGRAL, OR SUM OF COLUMNS COMING FROM THE INTEGRAL

K=1/100

X 4 2%

001 1027182818

014 1.380559456

063 2712517552

074 3.011528553

sum=

Log (p+1}-o (p)

0.00863644

0.004374128

0004086048
0004047963

0004010581

0003973883 LOG(P)

0003937851 0.47878698518133900

0.478786985181339000 NO DIFFERENCE

/10

3.174625463

sum=

Log (p#1)-log (p)
0104

(P)
0038875788 0.50169249528209500

0.501692495282095000 NO DIFFERENCE

K=1/1000

1.038055946

1171251755

1.266391619
1.269109901

Sum=

Log (p+1)-log (p)
1178933

0001138747

0001009097
0001006758

000100443
0001002112
0000999805
0000997508

0000975112
0000972927

0000933205
0000931205

0.103499232290735000
@cmy-

100 or 1000 partial value of the integral. To have significant errors we have

rise lot K.

LOG(P)
0.10349923229073500

NO DIFFERENCE

probably to

145
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2) Gnomons over Ellipse

See the above integration via Step Sum of a quarter of an Ellipse:

2.5

——X"2+Y72/4=1
—K=10

K=30

15! —7\

Y

Something of very interesting will happen rising K: while one expect that the precision of
the measure will rise continuously, it is false due to the Sum of Approximation done by the
PC so:

- From K=10 to K = 20 the error fells lot
- from K=20 to K = 50 is quasi linear but:

- K = 50 gives a better result than K = 60, and this is a very big problem for physics
study. In this case 10 times more precise instrument gives better precision in the measure,
but it is not always an insurance...

In the next page the Table with numbers and the Graph of the Error.
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a=1 (-4%(INT(K*X)/K)"2)N(1/2) b=2
K=10 K=20 K=30 K=40 K=50 K=60 K=70 K=80 k=90 K=100
X T10*x)/1012)7(1/2) (4-8*(INT(30%x)/30)/2)7(1/2)  (4-4*(INT(SO*x)/50}2}(1/2) Y={d-8*xn2)n(1/2)

0 2 2 2 2 2 2 2 2
0.01 2 el el 2 2 2 2 2 2 1999899997
0.02 2 2 2 2 199959996 1.9997222 1.9997959 19998437 1.9998765  1.99959996
0.03 2 2 2 1999374902 199959996 1.9997222 1.9991835 19993749 1.9995061  1.999099797
0.04 2 2 199888858  1.999374902 1998399359 1.0988886 19991835 1.0985933 19988886  1.998399359
0.05 2 1997498436  1.99888858 1997498436 1998399359 19974984 1.9981624 19974984 1.9980237 1.997498436
0.06 2 1997498436 199888858 1997498436 1996396754 19974984 1096732 19974984 1.9969112  1.996396754
0.07 2 1997498436 1995550606 1997498436 1996396754 19955506 1996732 19960899 1.9955506  1.995093983
0.08 2 1997498436 1995550606  1.994367068 1993589727 19955506 1.9948914 19943671 1.9939414 1993589727
0.09 2 1997498436 1995550606 1994267068 1993580727 19920435 1.9926395 1.992329 1.9920831  1.991883531

0.1 19899749 1989974874  1.989974874 1.989974874 1.989974874 1.9899749 1.9899749 1.9899749 1.9899749 1.989974874
011 19899749 1989974874 1989974874 1989974874 1.989974874 1.9899749 1.9899749 1.9899749 1.9899749  1.987863174
0.12 19899749 1989974874  1.989974874 1.989974874 1.985547783 1.9863423 1.9868958 1.9873034 1.987616 1.985547783

0.75 1.4282857 1322875656  1.359738537 1.322875656 1.345213738 1.3228757 1.3388999 1.3228757 1.3353688 1.322875656
0.76 1.4282857 1.322875656 1.359738537 1.322875656 1.299846145 1.3228757 1.3064987 1.3228757 1.3101692 1.299846145
0.77 14282857 1322875656  1.284090686 1322875656 1.299846145 1.2840907 1.3064987 1.2939764 1.2840907  1.276087771
0.78 1.4282857 1.322875656 1.284090686 1.263922466 1.251559028 1.2840907 1.2726319 1.2639225 1.2570787 1.251559028
0.79 1.4282857 1322875656 1.284090686 1263922466 1.251559028 1.2432037 1.2371791 1.2326293 1.2290717 1226213684

038 13 13 13 12 12 12 12 12 12 12
0.81 12 12 12 12 £2 £2 £2 £2 £2 1.172859753
0.82 12 12 12 12 1144727042 1.1542193 1.1609286 1.1659224 11697842 1144727042
0.83 3 p b p b 1.130265456 1.144727042 1.1542193 1.1197667 1.1302655 1.1383332 1.115526781
0.84 1.2 12 1105541597 1.130265456 1.085172797 1.1055416 1.1197667 1.0928746 1.1055416 1.085172797
0.85 1.2 1.053565375 1.105541597 1.053565375 1.085172797 1.0535654 1.0762748 1.0535654 1.0712863 1.053565375
0.86 1.2 1.053565375 1.105541597 1.053565375 1.020588066 1.0535654 1.0301575 1.0535654 1.035422 1.020588066
0.87 1.2 1.053565375 0.997775303  1.053565375 1.020588066 0.9977753 1.0301575 1.0121141 0.9977753  0.986103443
0.88 1.2 1.053565375 0.997775303 0.968245837 0.949947367 0.9977753 0.9810448 0.9682458 0.9581361 0.949947367
0.89 1.2 1.053565375 0.997775303 0.968245837 0.949947367 0.9374907 0.9284615 0.9216154 0.9162457 0.911921049

09 08717798 0871779789 0871779789 0.871779789 0871779789 08717798 08717798 08717798 0.8717798 0871779789
091 0.8717798 0.871779789 0.871779789 0.871779789 0.871779789 0.8717798 0.8717798 0.8717798 0.8717798 0.829216498
092 08717798 0871779789 0871779789  0.871779789 0783836718 07993053 0.8101398 0.8181534 08243216 0.783836718
093 0.8717798 0.871779789 0.871779789 0.759934208 0.783836718 0.7993053 0.7423075 0.7599342 0.7733206 0.735119038
094 0.8717798 0.871779789 0.718021974 0.759934208 0.682348884 0.718022 0.7423075 0.6959705 0.718022 0.682348884
095 08717798  0.6244998 0718021974 06224998 0682348884 0.6244998 0.6663945 0.6244998 0.6573422 06244998
) 096 0.8717798 0.6244998 0.718021974 0.6244998 0.56 0.6244998 0.5792324 0.6244998 0.5896222 0.56
097 0.8717798 0.6244998 0.512076383 0.6244998 056 05120764 0.5792324 0.5425634 0.5120764 0.486209831
: 098 08717798  0.6244998 0512076383  0.444400721 0397994975 0.5120764 04746642 04444097 04192881 0.397994975
i 099 0.8717798 0.6244998 0.512076383 0.444409721 0.397994975 0.3636237 0.3368522 0.315238 0.2973131 0.28213472
i 1 [} [ [ [ [ [ [ [ [ [
5 SUM *0.0: 1.6522592 1.61423244 1605725336 1.597625582 1589134256 1.5920276 1.5915477 1.5888264 1.588323 1580208516
i ERROR: 0.0814628 0.043436113 1.605725336 0.026829255 0.018337929 0.0212313 0.0207513 0.0180301 0.0175267 0.009412189
TRUEAREA 15707963 pi.greco()*a*b /4

ERROR RISING K

1.64

1.63

== ERROR RISING K

161

157 o T T T

Something of very interesting will happen rising K: while one expect that the precision
of the measure will rise continuously, but as seen into the chart this is false, and I left the
investigate on to understand why.

Is not hard to imagine why we define caos, or non deterministic, most of the nature events...
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Chapt.19: The General n-th degree Equation Solving Algorithm:

To better understand the power of our Two Hand Clock, I'll present here a short example
of how we can use it to solve also problems involving more than one Power, and or mixed
terms, constant, so what we call Polynomial equations. Any Polynomial Equation of Any
Degree.

It is proved true that a General Algorithm for solving ALL the n-th equations doesn’t ex-
ist, due to the "Radical Closure", in other words there is no Radical Solution to any higher
degree equation using the Known Multiplicative Algebra, but using my Additive Alge-

bra, and understanding what a Radical is, in its general, most wide, definition, the prob-
lem vanish (but unfortunately it do not solve all the equations because some rest non re-
ductible).

Living to someone else to debate if what I'll present is a Numerical Solution, or a more
general concept for extract Radicals also from what is not a perfect power, just, so any
Root of a Polynomial Equation, I'll present you here the simple methos to find the roots
to Any Degree Equation (must be clear that sometimes works and sometimes not !).

A) The General Solving Method using CMA: There is a General Solving

Method for Polynomial equations using my CMA, it means that there is a More General
Concept of what a Radical is: not just the result of the n.th root, coming from a special

polynomial equation of the type: X" = const, but any root coming from any n-th degree
polynomial equation.

To extract Roots from Any Polynomial n-th Degree Equation you simply:

- Transform Any Power Term of the Polynomial Equation into a Sum from 1 to Rz if you're
searching for integer solutions, or from 1/K to Rz if you're looking for Rational ones,

where Rx is ANY Root of such equation

Using the appropriate Complicate Real M, x or Imaginary Modulus M, x; (in case the
constant term is negative)

Then applying the Sum Properties you can Sum all the Terms of the Sums having back
the solving (no always!) Polynomial (is our Integer or Rational derivative).

This Sum is the Algebraic representation of your equation, and sometimes exactly returns
you any Integer or Rational Roots of the equation.

Imaginary Roots are not yet investigated enough at this time.

So with this new General Root Extractor (Algo, if it works) you will have back any of the
Integer or Rational or Algebraic Irrational or imaginary Roots Rx* you're looking for.

Where |Rx * | is of course a Rational Number, but also at the Limit for X' — oo any Real
Root (or zero) Rx coming from the Integral. So this Algo has no limits in its application,
but of course the computation will truncate the numerical result of the Root in case it is
an Irrational or a long Rational.
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I start with the first most simple example of how to find the Roosts of a 2th degree equa-
tion:

X?2_5X+6=0

1) We put:
Raxx*
X?=) "(2X - 1)
/K
2) then we put:
Raxx* Rxx
BX =5+ ()= (5)
/K 1/K

3) We can Sum all the terms with their sign under a single Sum, since the Upper Limit is
the Same:

Rxx

D (2X —6) =6

1/K

4) So any Integer / Rational / Irrational, Positive or Negative Root of the Polynomial Equa-
tion X2 —5X +6=0

will comes from the vice versa of the Sum, so as a Result of Recursive difference, so any
time in the recursive difference we get a Rest equal to zero:

Roots of (XA2-5X+6=0)

Diff. from

first root
second root

B W N R X
|
N

N O O N O

2

What is interesting here is that in some special case one Root is also the Root of First Ra-
tional derivative, infact for X = 3 we can have a root just in case the result of the single
line computation is again zero so if:

(2X —6) = —6
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that of course has X = 3 as solution.

So as we well know we can write:
X2—5X+6:O—>(X—2)*(X—3):0

It is not hard to imagine why we define chaos, or non deterministic, most of the nature
events...
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How the trick works on Higher Degree Equation:

Here a more interesting example of the Most Famous Unsolvable 5th Degree Equation X°—
X+1=0

transforming each unknown in a Sum till the Unknown Upper Limit is the Integer or Ra-
tional or an Algebraic Irrational Root R,

close to the Real one is Rx, we can write, with precision K = 10"

Raxx
X5 —X=-1 = ZM5’K’i — MI,K,Z’ =—-1
1/K

We will have for so Two type of solutions:

- Integers and Rationals with a finite number of digits comes in the Computational Total
Precision, so R,, = Rz,

- while the other will be an approximation till the maximum precision we are able to raise
with our computer, so with our maximum K, and R,, < Rx.

In the above example we have defined a new Imaginary Specific Complicate Modulus, M,5_,
Algebraically solve this quintic equation:

Rx
5 .
1/K

Of course the technical problem is that you must be capable to work with many significa-
tive digits, to have the desired precisions for the root.

Here is WOLFRAM solution:

x;—x+l:0

X ==-=1.1673
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And here is in the example keeping K = 10™ = 10* we get back exactly 4 correct digits
(pls note that each digit you get rising m of 1, will be an exact decimal, one, not an ap-
proximated one).

Solution for XA5-X+1=0 rl=-1.1673039782614 r1*=1.1673 K=10000

The Sum this part rise to r1n5 this rise to rl Constant

X x 5xM4/K-10x"3/K"2+10x"2/K"3-5x/K"4+1 /K5 Sum 1/K difference: -1
1 0,0001 -1E-25 -1E-25 -0,0001 -1,0001
2 0,0002 -3E-19 -3E-19 -0,0001 -1,0002
3 0,0003 -2,1E-18 -2,4E-18 -0,0001 -1,0003
4 0,0004 7,8E-18 1,02E-17 -0,0001 -1,0004
5 0,0005 -2,1E-17 -3,12E-17 -0,0001 -1,0005
6 0,0006 -4,65E-17 -7,77E-17 -0,0001 -1,0006
T 0,0007 -9,03E-17 -1,68E-16 -0,0001 -1,0007
_11648 1,1648 -0,00092024 -2,144158124 -0,0001 -0,020641876
111648 1,1648 -0,000820556 -2,145078679 -0,0001 -0,019821321
$/ 11650 1,165 -0,000920872 -2,145999551 -0,0001 -0,015000449
I 11651 1,1651 -0,000921188 -2,146920739 -0,0001 -0,018179261
3/ 11652 1,1652 -0,000921504 -2,147842244 -0,0001 -0,017357756
3 11653 1,1653 -0,000921821 -2,148764064 -0,0001 -0,016535536
"11654 1,1654 -0,000922137 -2,149686201 -0,0001 -0,015713799
11655 1,1655 -0,000822454 -2,150608655 -0,0001 -0,014891345
111656 1,1656 -0,00092277 -2,151531425 -0,0001 -0,014068575
J 11657 1,1657 -0,000923087 -2,152454513 -0,0001 -0,013245487
-/ 11658 1,1658 -0,000923404 -2,153377916 -0,0001 -0,012422084
111658 1,1658 -0,000923721 -2,154301637 -0,0001 -0,011598363
} 11660 1,166 -0,000924038 -2,155225675 -0,0001 -0,010774325
I 11661 1,1661 -0,000924355 -2,15615003 -0,0001 -0,00994897
3/ 11662 1,1662 -0,000924672 -2,157074702 -0,0001 -0,009125298
311663 1,1663 -0,0009245989 -2,157999691 -0,0001 -0,008300309
T 11664 1,1664 -0,000925306 -2,158924997 -0,0001 -0,007475003
1 11665 1,1665 -0,000925624 -2,159850621 -0,0001 -0,006649379
1 11666 1,1666 -0,000925841 -2,160776562 -0,0001 -0,005823438
111667 1,1667 -0,000926259 -2,161702821 -0,0001 -0,004997179
. 11668 1,1668 -0,000926576 -2,162629398 -0,0001 -0,004170602
111669 1,1665 -0,000526894 -2,163556292 -0,0001 -0,003343708
11670 1,167 -0,000927212 -2,164483504 -0,0001 -0,002516496
L 11671 1,1671 -0,00092753 -2,165411033 -0,0001 -0,001688967
311672 1,1672 -0,000927848 -2,166338881 -0,0001 -0,000861119
» 11673 1,1673 -0,000928166 -2,167267047 -0,0001 -3,29532E-05

3 the Root Extractor for this quintic is for so:
) M_{X5-X,K,i}= 5x74/K-10xA3/KA2+10x"2/KA3-5x/KA4

The solution obey to this proven rule, is , theoretically due to the Algebraic construction
of the solution, capable aslo to work till the limit for K’ — oo with an infinite number
of digit, so it is not an approximation (that is just a technical problem as the same hap-
pens when you’ve as result f.ex. v/2 and you’ve to show the value of the numerical result
SO someone).

Returning to our example, the Solvable Quintic: the Modulus we must use to find the Roots
in the Recursive Difference from the known constant, here: —1 looking to have Rest = 0
(or as close to zero as we can in case of Irrational Roots) is:

4 3 2 T 2

x x x
That differs from the 5th line of the Tartaglia’s triangle Ms x,; (represent X°), for the last
term, just, since we have to add with the right sign M x; (represent X), that is the con-

stant % summed K times.

And still if the Number R,* represent the Closest Rational to an irrational Solution comes
from a long computation of very long Rational digit numbers, we can affirm that we can



always find any R, Root, using what I hope is clear now is a more General Root (Alge-

braic) Extractor (GRE theorem).
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So the point is: I've produced a new more general definition for a Radical Root, finding a
General Polynomial Root Extractor that can works on any Polynomial and the classic n-th
Root algo that is capable to work (in general) just on Hypercube, is just a sub class of this

General Polynomial Root Extractor.

Unfortunately the GRE method can works on any polynomial equation, but NOT ANY
EQUATION will produce a first integer derivative that has the same zero of the original

equation.

Here is the case of:

(x—=1)(z—=2)(z—=3)(z—=5)(x—T7)=0

that lead to a rest of —4 instead of the first zero, as soon as you start the descent, and

then no more zeros will appear:

((x-7)(x-5)(x-3)(x-2)(x-1))
F(X)= xA5-18x"4+118x"3-348x"2+457x-210
F'i(x)= 5x"4-72x"3+462x"2-1122x+941

W 00O N U WN

214
49
194
517
1006
1769
3034
5149
8582

R. Difference
210
-4
-53
-247
-764
-1770
-3539
-6573
-11722
-20304
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Here 2 example of Quintic we can solve via this algo:

((z =Dz = 3)(z = 5)(z = 7)(x - 13))

and is:

2° — 202% + 2942% — 129422 + 23932 — 1365

that has as first integer derivative (or general polynomial extractor):

5zt — 12623 + 106622 — 35912 + 4011

The second comes from:
((z = 1(z=3)(z = 5)(z = T)(z — 17))
and is:

2% — 332 + 35823 — 163822 + 3097z — 1785

that has as first integer derivative (or general polynomial extractor):

S5at — 14223 + 128222 — 4487z + 5127

Here the recursive difference show zeros:

Sol. of:  xA5-29xA4+294x"3-1294x2+2393x-1365 4500

((x-1)(x-3)(x-5)(x-7)(x-13))
1st1.D.: 5xA4-126xA3+1066x"2-3591x+4011 1365 4000

1365 0 3500
165 -165

1

2

3 -165 0 3000

4 -81 81

5 8 & 2500 /
6

4

8

105 -105 2000
105 o ——Seriel
-525 525 1500
9 -1011 1536 1000
10 -1299 2835
1 -1005 3840 %
11 -1005 4845 o : )
12 375 4470 0 7 4 6 8 10 12
13 3465 1005 -500
Sol. of:  xA5-33xA4+358x"3-1638x"2+3097x-1785 T
(- 1)x-3)(x-5)(x-7)(x-17))
1st1.D.: 5x"4-142x\3+1282x12-4487x+5127 1785 20000
1 1785 0
2 225 225
5 =5 = 30000
4 -117 117
5 117 0 20000
6 165 -165
7 -165 0 10000
8 -945 945
9 -2127 3072 0 et
10 -3543 6615 5 1 18 &5
11 -4905 11520
12 -5805 17325 -10000
13 5715 23040
14 -3987 27027 20000
15 147 26880
16 7575 19305 —
17 19305 0
18 36465 36465 |

How to obtain the 1st integer derivative in both case:
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1B EE T

L expand((x — 1) (x —=3) (x = 5) (x = 7) (x — 13))

Output x5 —29x* 42943 — 1294 x2 4 2393 x — 1365

Input expand(x® — (x — 1)5 — 29 (x* — (x — 1)*) + 294 (x3 — (x — 1)3) — 1294 (x2 — (x — 1)2) + 2393 (x — (x — 1)))
Output 5x%— 126 x3 + 1066 x? — 3591 x + 4011

7OE | EE T

et expand(5x* — 10x% + 1022 —5x + 1 — (116 x% — 174 x2 + 116 x — 29) + (882 x% — 882 x + 294) — (4786 x — 2393) + (2393))
QUL 5x% —126 x* + 1066 x2 — 5789 x + 5110

Input expand((x — 1) (x —3) (x —5) (x = 7) (x — 17))

o x5 —33x* +358x% — 1638x% + 3097 x — 1785

Tnput expand (x5 — (x — 1))

ufput 5x*—10x34+10x2 —5x+1

Tapit expand(33 (x* — (x — 1Y)

Otpst 132x% —198 x? + 132x — 33

0B T

Input expand(358 (x° — (x — 1)3))

Output 1074 x2? — 1074 x + 358

Input expand(1638 (x2 — (x — 1)%))

OupE 3276x — 1638

el expand(3097 (x* — (x — D)D)

QUi 3097

T expand(5x* —10x3 +10x% —5x +1— (132x% — 198x? + 132 x —33) + (1074 x% — 1074 x + 358) — (3276 x — 1638) + (3097))
et 5x* —142x* + 1282 x2 — 4487 x + 5127

I left here also my first tricks to solve some easy n-th degree equations.

There are no big news in this method, that is quite trivial, due to the fact that is the same,
or worst, in terms of computation load, to check for the solution of a polynomial, checking
every possible Integer Root from 1 to the biggest possible Root, but it can be interesting
to better search for the reasons let this works, and how - if, it can gives us some Rational

- Algebraic Irrational Root too, once we will use the M, x Rational Modulus, will also re-
define what we call an Algebraic Root.

Hereafter a simple example of one of the possible solving method for a Polynomial equa-
tion of 3th degree.

B) How to find the integer Roots of 3th degree polynomial:

X3 —10X%2431X-30=0

using the balancing method, so moving terms in both side.
Here we start with:

X3 =10X%2-31X +30

First of all remember the Sum property X? = Y% 3i> — 3i + 1,
and the Linearization Rule here for n = 3 (Remember in the Vol.1 there is the general rule
for all n=odd and the one one for all n=even), so we can write the Left Hand Term as:
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X
X3:X*22@'—1
1

Than we look for the first integer root: R1=X, so we can write, remembering that 2% =

212 —1)
R1 R1
RlxY» 2i—1=10%) (2 —1)+30—31R1
i=1 1

so taking the squares in the same hand:
R1

(10— R1)* Y 2i—1=31R1-30
1

So we immediately can see that the Biggest Root is bounded:
Max Root Value (10 —1) =9
and we have for so to solve the Complicate Modulus Equation:

i 2i —1 = (31R1 — 30)/(10 — R1)

Remembering we can extract the Square Root (from anywhere) using my Recursive Differ-

ence (so subtracting 2¢ — 1 terms from 1 to Rx)
We start the solving algo:

((31R1 —30)/(10 — R1)) — (2i — 1)|i = 1 =70
- So we perform the 1st turn subtracting: (2i —1)[i=1=1

((31R1 — 30)/(10 — R1)) — 1 =70 (al)
((31R1 — 30 — 10 + R1)/(10 — R1))) =70

(32R1 — 40)/(10 — R1) =20 (a2)

taking out the easy factors:

8(4R1 —5)/(10 — R1) =70

let us see that no integer solution is possible, So we go on:
-So we perform the 2nd turn subtracting: (2i — 1)|i = 2 =3 FROM THE (a2)

((32R1 — 40)/(10 — R1)) — 3 =70
((32R1 — 40 — 30 + 3R1)/(10 — R1))) =70

(35R1 — 70)/(10 — R1) =70 (a3)

taking out the easy factors:
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35(R1 —2)/(10 — R1) =70

Let us see that R1=2 is the 1st Integer Root.

but we can go over since we se Rx is bounded by the Max Root Value (10 —1) =9

-So we perform the 3th turn: (2i — 1)|i = 3 = 5 FROM THE (a3), looking this time for the
2nd root R2:

(35R2 — 70)/(10 — R2) — 5 =70
((35R2 — 70 — 50 + 5R2) /(10 — R2))) =20

(40R2 — 120)/(10 — R2) =70 (ad)

taking easy out the factors:
40(R2 —3)/(10 — R2) =70
Let us see that R2 = 3 is the Second Integer Root.

And we can, of course, go ahead since we see R3 is bounded by the Max Root Value (10 —
1)=9

So we finally find all the 3 Integer Roots, if any.
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C) How to find the integer Roots of bigger degree polynomial:

To proceed we need a more powerful method (still very trivial !): for example we can use
the property starts all this work:

Each Square of an integer A, is the Sum of the First "A" Odds, so we can rewrite the equa-
tion:

ot — 1123 + 4122 — 612 +30 =0

as.

2% x (22 — 11z + 41) = 612 — 30

7 = 61r — 30/(2* — 11z + 41)
Ad now start to search for the solutions remembering that each Root of the Polynomial is
Equal to One of our Zeros, when we subtract 1,3,5,...(2a-1), each time one of this Number

take the result of the Recursive Difference to Zero, it return us the Root of the Polyno-
mial. So first turn is check if:

61z — 30

—1=70
(22 — 11z + 41)

Solving we have:

(61z — 30) — 1% (22 — 11z + 41)

=70 1
(22 — 11z + 41) (1)
61z — 30 — 2% + 11z — 41 =70
—a” + T2z — 71 =70
So in the classic form (where one root will not be acceptable):
x? —72x 471 =70
T2+ /722 —4x71  T2470
e =1;(or: 71)
2 2
So yes Ry = 1 is our first Root. Then we can subtract from the (1) the next Gnomon
(20 —1)]; =2
(=% 4+ 72z — T1) — 3% (2* — 11z + 41) =70 (2)

—x? 4+ 722 — 71 — 322 + 33x — 123 =70

—42% + 1052 — 194 =70

That we can return in the classic form:

42% — 1052 + 194 =70
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105 + v/1052 —4 x4 %194 105+ 89

= 2;(or:24,25....)
8 8

The same for the following roots...
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Of course nothing change if we use the property that a Cube is the Sum of the
following M3 = (23 — (z — 1)3) Gnomons:

2® % (v — 11x) = —412* + 61z — 30

So we can check if holds true that:

5, —4la® 4 61z — 30

_ —1=20
v (x — 11)

—412% 4+ 612 — 30 — 1 % (z — 11) =20

4122 — 60z + 19 =70

60 £ V602 —4%41%19  60+£22
82 82

1; (or : 19/41)

I write here an example of how to solve the case n = 5:

x® — 18z% + 11823 — 34822 + 457z — 210 = 0

Can be reduced to:

2% % (2% — 18z + 118) = 34822 — 4572 + 210

so we can start from Ry = 1 our search so if:

348z% — 457x + 210 — 1 (2% — 18z + 118) =70

347x% — 4392 + 92 =20

439 4+ /4392 — 4 % 347 %92 439 + 255
2 % 347 = ey Llor:92/347)

...and of course we can go ahead searching for the next Roots.

We can go ahead ab infinitum ? Unfortunately, of course, Not, due to what is known as
the Radical Closure, and the fact that we are using as final solving equation the Square, or
the Cubic Solving formula.

...BUT WE CAN CHEAT and go ahead for n > 5 !!! You can’t believe ? Just remember
that if Ry = 1 then

28 — 242° + 2262* — 10562° + 254522 — 2952X + 1260 = 0

is equal to write:

242° — 226x* + 105623 — 254522 + 2952X — 1260 = 1°
So:
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242° — 226x* + 105623 — 254522 + 2952X — 1261 = 0

we can solve as the last quintic here above:

2% (242° — 2262 + 1056) = 25452 — 2952X + 1261
254527 — 2952X + 1261 — 1 % (242% — 2262 + 1056) =70

252122 — 2726 X + 205 =0

9796 &+ ¥/27262 — 4% 2521 % 205 2726 & 2316
_ — 1 (or : 205/2521
2% 2521 2% 2521 (or : 205/2521)

etc....

Moreover, any Ring has the same properties shown here for Polinomials, will lead to simi-
lar zeros, or Roots. But this will require an Abstract Algebra discussion that is not what I
would like to do here, since my purphose is to introduce young students to a new point of
view or the known classic algebra.

For those will immediately argue that this is a Numerical Solution, I answer that this is an
Algebraic solution, and also the extraction of a known n-th Root, i prove is a special case
of this more general one, at the end of a solvable equation, will require, in non trivial case,
tables or a Numerical computtion to extract the root or the n-th root.

So I hope T’ve proved here that the concept of Root is much wider and lead to new inter-
esting simple results can be presented without any abstract definition of Groups / Rings /
Ideals etc...
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Chapt.20: The New Complicated Risen Modulus M,

To left unchanged the result of a sum:

P
P"=) 3X’-3X+1
1
Lowering the Upper Limit, from P to p

Imply we Must Rise All the Terms of (for example here) Ms of a scaling factor (as seen)
P/p

Or, and this is what is interesting, to use a new one we will call M3+, using an "unknown"
method, we imagine will depends on how the Complicate Modulus M, is build, and be-
have, moving backward.

In this case can be useful the develop of ((X 4 1)" — X™) since (in this case) it leads to the
first approximation for Mj, :

since it is the sum of the Known modulus M3 and of the Second derivative Y” = 6z or:

My, = Ms+Y" = M;+6X =3X>+3X +1

But this Linear Shift is not enough since we know the Second Integer derivative for n = 3
is V" =6X —6,
than the next following terms will depends on the Second Integer derivative Y/ = 6X — 6,

where we have now to change X = (z — 1)

So the Shift (given by the variable exchange), imply we need to use also another Riser Term
equal (for n = 3) to:

But as we saw on the Table, the Modification of All the Terms using this Two Modular

Parameter, IS NOT ENOUGH to Rise To the Genuine Power, since using the new Ms, 5
modulus, we need to introduce a ONE TIME Correction PARAMETER we know is the

Rest = R, that introduce the correction for the removed terms, so is equal to ™.

As shown in the Tables in this case 6% = 1, 8,27, 64....:
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Here the table of what happen Lowering the Upper Limit of 1,2,3 and 4.

As we immediately see, using the Induction, will be possible to build and prove all the
next case for higher 4, n.

In physics this looks like the Hysteresis Cycle: it rise following a known function, that,
since we always spend (dissipate) energy, will differs once we return (felling) to the initial
point. The area between the two curve represents the dissipated energy.
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M{3,5)= {3(x)"2-3(x)+1}+ {6/3+66x+(3612-36+1)} R

X | 3x"2-3x+1 |Sum 3(x)"2+3(x)+1 SUM |Rr=5~3| SUM +R
1 1 1 7 7 1 8

2 7 8 19 26 27

3 19| 27 37 63 64
§=2 M3(86=2) X=x-2

X | 3xA2-3x+1 | Sum 3(x)"2+9(x)+7 SUM R SUM+R
1 1 1 19 19 8 27

2 7 8 37 56 64

3 19 27 61 117 125
4 37| 64 91 209 216
6=3 M3(6=3) X=x-3

X | 3x"2-3x+1 |Sum 3(x)"2+15(x)+19 SUM R SUM+R
1 1 1 a7 a7 27 64

2 7 8 61 93 125
3 19| 27 91 189 216
4 371 64 127 316 343
5 61| 125 169 485 512
65=4 M3(6=4) X=x-4

X | 3x"2-3x+1 |Sum 3(x)"2+21(x)+37 SUM R SUM+R
1 1 1 61 61 64 125
2 7 8 91 91 216
3 19| 27 127 127 343
4 37| 64 169 169 512
5 61 125 217 217 729
6 91| 216 271 271 1000
5=5 M3(5=4) X=x-5

X | 3x"2-3x+1 |Sum 3(x)"2+27(x)+61 SUM R SUM+R
1 1 1 91 91 125 216
2 7 8 127 127 343
3 19| 27 169 169 512
4 37| 64 217 217 729
5 61| 125 271 271 1000
6 91| 216 331 331 1331
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Of course, since this is an approximated formula, one can also use other formulas leading
for example to having other Rest, for example reducing it as much as possible (as I'll show
in a while going Rational).

I skip the proof by induction because, once again, all depends on the Binomial Develop
Rule.

And still if will be interesting to see the parallel to what was known as the "Infinite De-
scent" since I’ve also shown in the Vol.1 how to go Rational with the Sum, one can imag-
ine and try to rewrite all in terms of my Rational Step Sum, seeing that moving of 1/K
step, rising K we can reduce the Rest to Littlest and Littlest values, till 0 when we push
at the limit for K — oo and we will no longer have a REST.

Since I hate professors leave to the Diligent Students the Rest of the Proof (as an exercise)
I'll do all the (trivial) job as soon as I have time.



166

Chapt.21: List of Known, and New Rules for Sums and Step Sums

Here T remember a short list of the known Sum’s rules. Some of them will LEFT UNCHANGED
the RESULT of the NEW SUM, some will modify it. All this are process that Cut, Split,
Stretch, Scale the Area Bellow the first derivative so we can figure them out also painting

a picture on a Cartesian Plane.

1 - Ordinal Rules, based on known properties:

Rule 1.1 Calling M, the Integer Complicate Modulus (that will be the Ordinal Number
for Power of Integers):

M, = (2" — (x — 1)")
And Calling M,, i the Rational Complicate Modulus (Ordinal for Power of Rational):

M _ n xn—l N n xn—Z N n xn—3 N N / B 1
n,K — 1) Km 2] K2m 3] K3m K nem

if A € N* then:

A A A A
n __ _ . _ n—1
A" = E M, = E MnK_IPL%o E Mn’K—/ﬁ_Onx dx
z=1 z=1/K z=1/K -

Rule 1.2: if A= (£) with P,Q € N" so if A € Q" — NT then we can write A" as
A A A
— — 1; _ n—1
> = Z M, gkm —I%;moo Z M, km _/xzonx dx

Rule 1.3: if A € R — Q" and A = Knownlrrational then we can again use the Rule 1.2,
having an irrational Step Sum, so having Irrational Lower and Upper Limit, and a Finite
Integer Number A % K™ of Irrational Step.

A A A
A" = Z Mn,K = 1%1_13’1 Z Mn,K — / nl,n—ldx
o0 =0

z=1/K z=1/K

Rule 1.4: if A € R — Q" and A # Knownlrrational then we have just one way to write
it, so via Limits so Integrals:
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2 - Interesting, known, Rules (In Number Theory there are, of course, more known
rules).

One of those we need to remember is: an integer A has an unique factorization

Rule 2.1: If A is not a prime, so for example A = 7, x 7, than its power can be
represented as a product of proper Sums.
Taking as example A%

A

A= (22 1)

r=1
Follows immediately that it can be divided in a product of 2 sums

™ ™2

A= () (m)’ =) (Qu—1)*> (2z-1)

z=1 =1

Of course more factors, more sums.

2.2: If A" =77 + 7}

then also the sum can be divided, but this happen just for n = 2 as a consequence of Fer-
mat’s Last Theorem Proof:

A=3"Qe-1)=) 2e—1)+)Y (2z-1)

Rule 3: How to GROUP, or CUT, a SUM :
Sums are interesting since is very easy to be Grouped or Cut without changing the result:

Starting from the known in case n = 2 and A = m; * 3 we can re-use the sum identity we
already know from the RULE 2.1:

T ™2
A= "2r-1)x) (2e—1)=
=1 =1
And since independently by how we call the index x or r, it is a mute variable, we can use
just one index: x, to have:

AQZZ@x—l)*Z@x—l):

= (21:—1)*(2(21:—1)—1— Z (2:6—1))

r=1 r=1 r=m1+1



168

I remember now how is possible to manipulate a Sum equal to a Power of A without chang-
ing the result of the Sum, so having back again the same Power of Integer, or Rational A.

T2 x (Z (2x —1)+ Z (2x — 1)) = (m1)? * (m3)?

=1 r=m1+1
SO:
T ™2
Y r-1+ > (2r-1)=(m)
r=1 rx=m1+1

That’s very easy but will help us in the next tricks I'll present.

Rule.4: Multiply the Sum by A is equal to Multiply All the internal Terms by A (so both
type index dependent and constant ones)

A A
(Z(Qx—l)) x A=) (204 - A)

=1

Rule.5: If we Change ONLY the upper limit of the Sum:

This manipulation will produce different effects on the result of the sum:
- Rule 5.1 If we multiply the Upper Limit A by itself, or if we make a Power of
it :

If n is the exponent of the original sum:

A

AT =) " (@" = (z—1)")

If we change the Upper Limit from A to AP we have:

AP

" = (= 1)) = A0

z=1
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Example 1: if we have:

then taking as new upper limit A? we have:

AxA

> (2z—1)= A

=1

- Rule 5.2 What happen if we multiply the upper limit A by an integer P :
Is trivial again: the result of the sum change from A" to (A x P)"

Rule.5.3: Multiply Both the Lower and the Upper Limit by an integer P change the Re-
sult of the Sum.
For example if we keep:

A

A= (22 -1)

z=1

if we multiply both lower and upper limit by P:
AxP
> 2xPxX-1)
r=1xP

We have no longer a square:

Table 15: Add caption

X X =5x | 2X-1 SUM new
Square:

P*x
1 5 9 9 3
2 10 19 28 | 5,291503
3 15 29 57 | 7,549834
4 20 39 96 | 9,797959
5 25 49 145 | 12,04159
6 30 59 204 | 14,28286
7 35 69 273 | 16,52271
8 40 79 352 | 18,76166
9 45 89 441 21
10 50 99 540 23,2379

As you can see sometimes we have a Square again, but I left the interesting concerning on
what happen to the Vol.2

To Let the Sum give back again the same Power we just need to make the exchange of
variable X = Pz, so divide each = dependent term by P (at the same power).
For example if we keep:
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A

A=) (2w - 1)

r=1

The same Power with Shifted, multiplied by P, Limits will be:

AxP

Table 16: Add caption

X X =5z 2+X/5—1 | SUM
1 5) 1 1
2 10 3 4
3 15 5 9
4 20 7 16
5 25 9 25
6 30 11 36
7 35 13 49
8 40 15 64
9 45 17 81
10 50 19 100

Or if we wanna have back a Power that is P times bigger, we need to make the exchange
of variable X=Px, plus the Right Shift into the constant term in this way:

Starting from:
For example if we keep:

- Rule 5.2 if we multiply both lower and upper limit by P, and we wanna be sure we will
have always back a Power of an integer we need to arrange the Constant Term too as in
the following example:

A*ZP (2% Px X — P?) = (A P)?

rx=1xP

The following RULES, valid for the SUM that are EQUAL to a POWER of
INTEGERS, are probably less known, and will be useful for solving Several
(also very Hard) Number Theory Problems, as we will see in Vol.2: RATIO-
NAL ANALYSIS.

It’s possible to arrange, under certain conditions, the Sum Limits, and the in-
ternal Terms of the Sum to Left Unchanged the result of the Sum, Just if WE
RESPECT some RULES:
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Rule.6: Shifting of a fix value A, Both the Lower and the Upper Limit: is equal
to ADD, (or subtract) A to the Index dependent terms X where present.

- 6.1 If the index in the sum is z, Rising both Lower and Upper Limit of A is
equal to change X in (X — A).

Here an example for n = 3 on how to do if we Rise Both the limits by A and we have to
leave unchanged the result of the sum:

B A+B
BY=) 3X*-3X+4+1= ) [BX-A)?-3(X-A)+1]
X=1 X=A+1

The proof is simple: taking this example as reference the shift doesn’t affect the num-
ber of step, that rest the same:

(B—1)=A+B—(A+1)

Table 17: Add caption

X | 3X2-3X+1|SUM | 3(X —A)2-3(X—A)+1 | SUM
1 1 1
2 7 8
3 19 27
4 37 64
Al 5 61| 125
A+1| 6 91 | 216 1 1
7 127 | 343 7 8
8 169 | 512 19 27
9 217 | 729 37 64
10 271 | 1000 61 | 125
11 331 | 1331 91 | 216
12 397 | 1728 127 | 343
13 469 | 2197 169 | 512
14 547 | 2744 217 | 729
15 631 | 3375 271 | 1000
16 721 | 4096 331 | 1331
B | 17 817 | 4913 397 | 1728
18 919 | 5832 469 | 2197
19 1027 | 6859 547 | 2744
20 1141 | 8000 631 | 3375
21 1261 | 9261 721 | 4096
A+B | 22 1387 | 10648 817 | 4913

- 6.2 If the index in the sum is z, Reducing both Lower and Upper Limit of
B is equal to change z in (x + B). So if the term is 3X?, the new term will be
3(X + B)?

Here an example for n=3 on how to do if we LOWER BOTH the limits by B:
c C-B

> 3X7-3X+1=) [B(X+B)’-3(X+B)+1]

X=B+1 r=1



172

The proof is simple: taking this example as reference the shift doesn’t affect the num-
ber of step, that rest the same:

C—-(B+1)=C—-B-1
And the shift affect just each term of the sum that is "index dependent" so instead of x
we simply put x + B and nothing change.

As told we put (z — B) in case we want to RISE both the Limits of B
Rule.7: Any n-th power of integer is equal to a Sum of a linear terms; Odds or Even pow-
ers require different linear terms:

Rule.7a: Any EVEN n-th power of integer A®?) is equal to a Sum of a linear terms (2z — 1)

Rule.7b: Any ODD n-th power of integer A®P+Y is equal to a Sum of a linear terms (20A — A)

ALL THE PREVIOUS RULES can be now extended to the integral / derivative process
I show pushing Sum’s to the limit to discover that all that rules are already well known,
since the infinitesimal calculus has proceeded faster than this "trivial" Rational play.

Rule 8: The Sum can be transformed in a Step Sum , Step 1/K:

In case A = %, we can write:
P/K

n P "
w=(x) = 3 e

z=1/K

where: where:

Mo n\ z" ! n:c"_2+ nx”_3+ ny 1
nK — 1) Km 2 ) K2m 3 /) K3m Jnxm
Rule 9.1: The Step Sum, step 1/K, can be transformed in an Riemann (like)
Integral just passing to the limit for K — oc:

A A
A" = lim M,k = / (n* 2™ Ydx
0

k—o00
z=1/K

Rule 9.2: As the the Recursive Sum becomes an Integral at the limit for K — oo, the
Recursive Difference becomes at the limit for K’ — oo the derivative.



173

Rule 10 as extension of Rule 6: Shifting of a fix value (B for example), both the lower
and the upper limit is equal to ADD B to the Index (here x). So the Shift affects only in
the Index dependent Terms . Here an example for n=3 where we know that:

C C-B
> 3X7-3X+1=) [BX+B)’-3(X+B)+1]
X=B+1 X=1

We can see now that this rule works also passing to the Step Sum, Step 1/K, so putting
x = X/K and then to the integral that is the limit of the Step Sum for K — oo:

Proof:

Starting from:

C
, 322 3z 1
dm o 3 (7—ﬁ+ﬁ>—

z=B+1/K

c
= / (32%)dx = 2%|(C,B) = C* - B?
B

Shifting the lower and the upper limit by B, and adding B at the index (here x) dependent
terms (only) we have again:

C-B
lim 3(x + B)*/k — 3(z + B)/k* + 1/k*] =

k—o00
z=1/k

_ /CB 3(z + B)dz — C° — B?

And in general for the infinitesimal Step dx, so in case we push the Sum to the Integral we
can write :

c C-B
/ [n s 2™ V]de = / [n(x + B)" V)dz = C" — B"
B 0

While of course for the special case n = 2 for some triplets known as Pythagorean Triplets
the relation holds true also for Sums having Integers Step:

C C-B
Y 2X—1=) [2X+B)-1]
X=B+1 X=1

Is clearly true for any Pythagorean Triplet, fex A =3, B=4, C =5.
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And this because both Terms ad Limits Linearly behave.

Author Note: This can be, probably, the evidence that Fermat, while studying the prop-
erties of Powers and Integrals, got himself to this conclusion.

Of course at that time justifying the "vanishing" terms (since major orders infinitesimal
quantity) to his colleagues was an impossible mission, so probably this can be the reason
why we haven’t found his concerning about.

In the previous Rules we have seen how to Shift the Lower Limits Leaving unchanged the
result. Here an example for n=3:

c C-B
d 3’ —3x+1=> 3(x+B)’—3@x+B)+1
B+1 1
But while we are sure that the equality work, we do not ask ourself to what this value cor-
respond, so for example if it can be (again) equal to a Cube, or not. And this exactly what
is known as Fermat The last Theorem:

A c C-B
A= "32"—3x+1=) 32" —3r+1=) 3(x+B)’—3(z+B)+1
1 B+1 1
Where we are sure that the equality of the first two terms holds, and the same for the equal-
ity of the last two terms, but NOT of the equality between the first two, with the last two.
Fermat is for so a Special Case of a most general Shifting Rule. Wiles prove the equality is
impossible and I’ll prove impossible too, for all n > 2 in a most simple way in the Vol.2,
after presenting here this last Rule.
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Rule 11: Scaling the Sum. Index Vs. Terms Scaling / Shifting Rules

We see now the Last Set of Rules will help us to work with any problem involves Powers
and Equalities:

A) - how to Scale (Up or down) the Upper Limit LEAVING THE RESULT UNCHANGED,
so Rising/Lowering the Internal Terms of the SUM (JUST).

And, what happen trying to apply two modifications so:

B) - how to Scale (Up or down) the Upper Limit AND shifting the Lower one, LEAVING
THE RESULT UNCHANGED, so Rising/Lowering the Internal Terms of the SUM (JUST),
that is what Fermat state in his equation.

So in other terms for the Scaling Rule A:

A1) Is it possible, and under which conditions, to: Lower the UPPER LIMIT
from A to a < A, just, leaving the result unchanged RISING the VALUE of the
INTERNAL TERM/s ?

A2) Or, vice versa, is it possible, and under which conditions, to: Rise the LOWER
LIMIT, for example from 1 to LL > 1, just LOWERING the VALUE of the IN-
TERNAL TERM/s ?

The answer, for both case, is of course YES, with a trivial solution, if we introduce the
Lowering/Rising Factor p = (A/a) :

A a=A/p A\" a a
> M, =Y (5 M, =Y p"M,=p"> M,
1 1 1 1
a A=axp a\n A a
SoMu= >0 (5) Ma=d(1/p)" M= (1p)" > M,
1 1 1 1

As we can see the Lowering Factor p = (A/a) is of the same degree of the n-th Power we
are working on, and is applied on all the terms of the Sum. The Factor can be, clearly,
taken out from the Sum using the well known Sum’s Rule.
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Special Case if p =n

Will also be immediately clear that if p = n it is also a factor of the binomial develop so,
for example:

> M, =) (A"/a" M, = (1/p)M, = (1/p) Y M,

Witha =3, A=09, p=(A4%/a® =27/9 = 3 = n) can be written as::

a A
o= 32" =3+ 1=A=> (3/p)2” — (3/p)x +1/p) = Zx —r+1/3
1 1
This reduction can be done each time p = (A"/a™) = n = prime due to the the Binomial
Develop property that for all n = Prime, all the binomial develop terms (different from 1)
has n as common factor.

Table 18: Introducing the p factor in the terms
X [3X2-3X+1|SUM | X2-X+1/3| SUM

1 1 1 0,333333333 | 0,333333
2 7 8 2,333333333 | 2,666667
3 19 27 6,333333333 9

Let N be prime, we can prove that:
(%) is divisible by N for k = 1,2,..., (N — 1)
Let M = (JZ) then

N!
M = m, or equivalently N’ = MK'(N — k‘)'

Clearly N divides N!
Thus N divides M * k(N — k)!.

But if a Prime divides a product, then it divides at least one of the terms. Since N cannot
divide k! or (N — k)!, it must divide M.

But is there any way to re-write this formula in another way, without intro-
ducing the "trivial" p factor, for example changing the Index Dependent Terms
Only ?

The answer is, in general, OF COURSE NOT, since, for example, once we apply the cor-
rection on the constant term, or on the Index Dependent Terms, only, the correction is, for
sure, not a General Solution, because rising x of 1, or else, will immediately change the re-
sult of the equation, so it is no longer a general formula, but, in case, a special solution.

So the target is to find an Approximated Formula and, better, the Most Approximated
Formula that fixed the problem under certain conditions and that works for ALL the x of
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the same problem.

So the first thing we have to do is check if introducing a little as possible "Rest" we are
able to use a Reasonable Right Approximated Formula, and possible the Most Approxi-
mated one that is the one (or the set of the formulas) that once pushed to the limit will
perfectly fit the equation without Rest, as I did for the Classic Rational Sum.

From the Interesting Identity:

Prove Pell’s Equation B? — 242 =1 is:

S (2o s ()L
A AZ) A A?
z=1/A z=1/A

Has a Minimal Solution, then infinite solutions with A, B € N
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How to find a non trivial solution to Pell’s Equation B? — 24% =1

In Sum:
B A
DX —1)-2x) 2X-1)=
X=1 X=1
B A A
dDEX-1)-> 2X-1)=> 2X-1)+1
X=1 X=1 X=1
B A
doX-1)=) 2X-1)+1
X=A+1 X=1
Shifting the Lower limit:
B-A A
dDRX+A)-1)=) 2X-1)+1
X=1 X=1
Taking out the genuine square:
B—A A
Y RX-1)+24x(B-A)=) (2X-1)+1
X=1 X=1

We are looking for a solution so first concerning we can make is what about B— A =17

1+24=A%+1
From where: A =2 and then B = 3

(c) Stefano Maruelli
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From the point of view of my Complicate Modulus Algebra the question (under FLT con-
ditions so: A < B < (C € NT):

AP =2C% — B

Has an immediate answer (after one understood my CMA and the proof into Vol.2): NO !

Because that will lead to the clearly false equality (in the integers)

AVA cV<C BVB
3 <2_f_l> -y (2_55_1) S (2_“’_1)
A) B
le/\/z \/Z x:l/\FC \/6 ¢ z=1/vB \/E
Since there is no common factor for C' and B, therefore the only common divisor for the 3
Sum (let the step rise all the 3 irrational, coprime, Upper Limits) is 1/K with (K — oo)

so with the known integrand factor 1/K = dx where it can satisfy (at the condition that
one of the 3 parameter € R — Q,

So the only way to obtain an equality is to perform the integral:

AVA cV<C BVB
/ 2xdx :/ 2xdx —/ 2xdx

=0 =0 =0

(c) Stefano Maruelli
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Fermat the Last with Complicate Modulus Algebra:
Let A,B,C,n € N*.
Fermat state that from n = 3 it is true that

c"#£ A"+ B"

We can start to observe what happens in a genuine Power Develop, where it’s always pos-
sible to find A and B for what:

C?=(A+ B)® (2)
Because we can write:
c A+B
D (BX?-3X4+1)=) (3X*—3X +1)
X=1 X=1

Is an equality for C = A + B, means that it has NO LAST ELEMENT, in fact we can
dismount both Sum, step by step (from both limits so in both directions) till having back
0 =0, so it is also true that:

Cc-1 A+B-1
(BX?—3X+1)= Y (BX*—3X+1)

X=1 X=1

c—-2 A+B-2
(BX*=3X+1)= ) (3X°-3X+1)

X=1 X=1

-3 A+B-3
(BX?=3X+1)= Y (3X*—3X+1)

X=1 X=1

1 1

D (BX?-3X+1)=> (3X*—3X +1)
X=1 X=1

and finally:

0=0

Or vice versa from the Lower to the Upper Limit. What Fermat State is that if the equal-
ity it’s True, than there must be another way to write A" in terms of C" — B™ and to
better understand who this terms are, we can transform them in Sum, and then we can
apply on the all the Sum Rule we know now (also into Rationals) to investigate why the
case n = 2 works, and why not, from n = 3. I start hereafter to show in detail the case
n = 2 leaving all the final proof to the Vol.2 where T will show how to apply all the rules
we learn here into Vol.1.
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Fermat the Last n = 2 with Complicate Modulus Algebra CMA):

1) Why Fermat n = 2 admit solutions:

Let A < B < C € N*, n = 2 Prove with the CMA that the following Fermat’s equation

can be true into the integers.

A?=C*+ B?
If and only if A, B,C' € N, then we can rewrite the (1) as,

A C B
deX-1)=) 2Xx-1)-> (2X-1)
X=1 X=1 X=1

On what we can apply the Direct Cut:

A C
dex-1)= ) (2X-1)
X=1 X=B+1

On what we can apply the Limit Shift, then expel the rest, an then again):

i 2X — 1) CZB(2(X+B)—1)

A C-B
d (2X-1)=> (2X —1)+2B(C - B)
X=1 X=1

A
> (2X —1)=2B(C - B)
X=C-B+1
A+B-C
> (X +C-B)-1)=2B(C-B)
A+B-C
> (2X —1)+2(A+ B-C)(C - B) =2B(C - B)

A+B-C

(1d)

(1g)
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A+B-C
> (2X —1) = 2BC - 2B* + 2AB — 2AC + 2B” — 4BC + 2C” (1m)

X=1

A? +2AB —2AC + B* - 2BC + C? = 2BC — 2B* +2AB — 2AC +2B* — 4BC + 2C* (1n)

A? 4 2AB — 2AC + B> — 2BC — C? = 2BC — 2B + 2AB — 2AC + 2B7 — ABC 4267 (10)

A2+ B*-(C*=0 (1p)

2) Why for the same reasons Fermat from n = 3 doesen’t works:

Let new positive integers A < B < C' € N*, n = 3, the same as we did for n = 2:
A c B
D BXP-3X+1)# > (BX*—3X+1)— Y (3X*-3X +1) (2)
X=1 X=1 X=1

in the case n = 3, and most in general for any n > 2

Because if we make the hypo (already with the first known cut):

A C
dBXT-3X+1)= ) (BX*-3X+1) (2a)
X=1 X=B+1

Starting the dismounting process for both side (that has to follow all the Sum Rules I've
shown into Vol.1), we will see it stops at a last Cube, bigger than zero, proving there is an
Irreducible Rest, so proving that the equation (3) is not an equality into the integers. The
dismounting process it’s easy, just little long tedious as following (after the direct cut):

Shift the lower limit:

D> (BX?-3X +1) = Y (3(X+B)?—3(X+B)+1) (2b)

Taking out the genuine Cube of (C' — B), isolating the Rest:

A C-B C-B
D (BX?-3X+1)=> (3X*-3X+1)+3B ) (2X —1)+3B*C - B) (2¢)
A C-B
> (3X*-3X+1)=3B) (2X —1)+3B*C - B) (2d)

X=C-B+1 X=1
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On what we have again to shift the Lower Limit of the first Sum to 1 having (we work just
onto the first sum now):
A+B—C A+B-C A+B-C
Y BX+C-B’-3X+C-B)+1)= Y (X*-3X+1)+3B > (2X-1)—
1 1

A+B-C
-3 > (2X-1)+3%(C-B)?

putting the new terms again into the upper 2d formula, that has no space for the numeric
tag, we have:

C—-B C—B A+B-C A+B-C A+B—-C
3B (2X—-1)+3B% ) 1=? > (3X’-3X+1)+3B » (2X-1)-3C >  (2X-1)+3x(C—B)* (2e)
X=1 X=1 1 1 1

Reorganizing with the cube at in the left and all the rest on the right, with all squares
written as Sum:

A+B-C C—-B B
> (3X2—3X+1_3BZ (2X —1)+3(C—B) > _(2X —1)— (2fA)
1 X=1
A+B-C A+B-C C-B
—3B ) (2X-1)+43C Y (2X—1)=3x ) (2X 1) (2B)
1

(A+B—-C)*=3(B—1)(C—B)?+3B*C—-B)-3B(A+B—-C)*+3C(A+B—-0C)* (2)

(A+B-C)*=3(B-1)(C—-B)?+3B*C—-B)-3(A+B-C)*C - B) (2h)

That prove we rise a minimal, non longer reducible, Cube, but what is equal too is not
what we already prove it’s true:

A® +3AB? — 6ABC + 3AC? + B® 4+ 3BA? + 3BC? — C® — 3C A% — 3CB? =

= 6AB%*—12ABC+6AC?+3B*—3B*>+3BA*>+12BC?*+6BC —3C%—3C?%—-3CA%?—-12C B?

So we prove that in case the (2) is true, we will have 2 ways to write the Binomial Devel-
ope for (A+ B —C)3

If you understood how CMA works, the proof is closed.

Why if you rest with the old mind, you can be convinced that we just reduce the investi-
gation in if (A4 B — C) is a factor of the first two terms of the right hand (too):

3(B—1)(C — B)2+3B*C — B)

(A1 B—-0) €N’ (2)

(—-6B3 + 3B? + 3BC + 3CB? — 30) o)
A+B-C
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And one now argue that still if we will be able to prove it is not, so we (in case) prove the
case n = 3 we have to make the same long work for any following bigger n....

I hope it is clear why we can stop to the (2H): any Genuine equation lead to an equality
has 0 in both side as last element in the dismounting process, while here we have not since
we have a different number of combination (Binomial and Multinomial developes are com-
binatoric dependent theorem...)

But how remove in you any doubt of these 7 Continuing from the (2h) we have:

A% +3AB? —6ABC +3AC? + B> +3BA%? +3BC? — C® — 30 A%? —3CB? =
= 6CB%>+3CA%*-30%+3C%+6BC —6BC*—3BA%>—-3B%>—-3B*—-6AC?>+12ABC — 6AB?

So remembering we can use C°® — B3 = A3:

A3+9AB?—18ABC+9AC?*+4B3*+3B*+6BA%*+9BC?—6BC —4C*+3C?*—6C A2—9CB? = 0
(2m)

3A% = 9AB? — 18ABC +9AC? 4+ 3B* + 6 BA? + 9BC? — 6BC + 3C? — 6C A* — 9CB* (2n)

A® =3AB? — 6ABC + 3AC® + B®> + 2BA? + 3BC*? — 2BC + C? — 2CA* — 3CB*> (20)
A® +2A%*C - B) —3A(C — B)> = B>+ 3BC? —2BC + C* - 3CB? (2p)
A3+ 24%(C — B) - 3A(C — B)* = (C — B)* +3BC(C — B) (2q)

that is far from the original equation:

A+ B—-—C?=0

we can enter into the (2q) to vanish the term A3 having:

9AB*~18ABC+9AC*+3B*+6BA*+9BC? -6BC+3C*—~6CA*~9CB* = 3C*-3B> (2r)

3AB? —6ABC +3AC? + B*+2BA* +3BC* - 2BC + C? - 2CA* - 3CB* = C* — B® (2s)

or.

A® =3AB* - 6ABC + 3AC* + B®> + 2BA? + 3BC? — 2BC + C* — 2CA* — 3CB* (2t)

on where trying to rewrite all term in Sum, again, we can go on -ab infinitum- trying, but
not arriving, to the condition 0 = 0 as shown in page 180.

(c) Stefano Maruelli
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A C—-B
> (2w/A-1/A%) = ) (2(x+ B)/A—1/A%)
z=1/A z=1/A

Still if it’s again a simple question, we need to go deep inside the Sum Behav-
ior to show how Index Versus Terms behave.

As in my graphic style, we start to see a numerical examples for n = 3 of what happen in
case we try to modify both the Index and the Internal Terms TRYING to Left unchanged
the Result.

- We start to Lower the Upper Limit from Atoa=A—1,and wecalld = A —a

Trying to Left Unchanged the Result, we take the case n = 3 (n = 2 is a special case we
will see later), as example, knowing that in this case the second derivative is a monotone
rising curve and is Linear and equal to Y = 6X,

- and that the Second Integer derivative is (*) : Y = 6X — 6,

(*) but remembering that from what seen in the Voll. Chapter.12 this true just for x > n
and is NOT true for the First n — 1 Terms of the SUM.

This imply that is NO LONGER (in general) possible to "REBUILD" a Genuine Power
without the introduction of a CORRECTION PARAMETER, we know is a REST and we
are able (with modular math) to play with.

So till now we saw Rest = 0, just, operations, while this times we have to use our Compli-
cate Modulus Algebra in all it’s Power, so we have to be prepared to introduce/play also
with a CORRECTION PARAMETER R let us re-write our formulas using the MOST
APPROXIMATED MODULUS (in case a Zero cannot be found with any possible Inte-
ger/Rational formula), so using the most similar approximation formula we already know,
and works, in the classic case.

So as we can see in the first Table: keeping for example the Cubes, so a Sums having as
terms: Ms =322 -3z +1

- Lowering for example the Upper Limit from A=2toa=1,s00=A—a=1
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Fermat the Last with Complicate Modulus Algebra:

Let A< B < (C &€ NT.
Fermat state that from n = 3 it is true that

Keep the case n = 3 as example, and rewrite it in Sums:
A3 =03 - B3 (1)
A c B
D BXP-3X+1)#£ Y (BX?—3X+1)— Y (3X*-3X +1) (2)
X=1 X=1 X=1
Apply the direct known cut):
A c
Y BXT-3X+1)= ) (BX*-3X+1) (3)
X=1 X=B+1

Check each member on both side:
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Maruelli’s All Primes Interceptor :

Be:

If n Is Not a Prime then z € N (as the most famous Riemann Zeta gives negative
even)

If n IS a Prime then 2z € Q — Nr (as the most famous Riemann Zeta gives non trivial
7€108s )

where 9,,, is the Correction Factor is defined to be:
0, = 1 elsewhere except in:
n = 1 where d,, = 2/3 and in:

n = 4 where 0, = 2/3

One example of a suitable, still if not super elegant, ¢,, factor was given to me by Massimo
Di Paola :

Om =14 (2/3 = DxJ(1/(1+ [(n = 1)) + (2/3 = D] (1/ (1 +[(n = 4)P]

that in xIs can be written as:

Om =14 (2/3—=1)* INT[1/(1+ ABS(B2—1)))] + (2/3 = 1) « INT[1/(1 + ABS(B2 — 4)))]

Riemann Hypo Proof

If you believe in the Transfinite induction theorem, than looking to my z you’ve seen that
each trivial RH zero can be connected to an Integer value of my z (it is a non prime num-
ber), while each NON trivial RH zero can be connected to a Rational value of my z

So n? for my z works as Selector for primes, and it show, by Transfinite Induction, that
the behavior of the Real Part of S is 1/2 works as a selector too, than there cannot be
zero out of there.

In terms of my Two Hand Clock (that as shown can works also with Complex numbers),
Real Part of S is 1/2 behave as a 12 onto a classic clock, for any Prime Number.

The long chain lead to this result comes from the observation of my z onto numbers once
we use it to calculate the Number of Primes between 0 and P, or given a prime 7, find the
next one is m, 1.
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2- How to discover the position of any primes in the primes list (what
follows are not the only known methods)

With this simple trick you can understand the position of the primes “n” in the primes ta-
ble or how many primes there where before the integer “n”:

The official formula is:

(n — 2)!
mlz)= Y n{——r+2
S<n<s L
Where what [X] into the braces is the non integer part of X, forced as 1
A more simple to understand method is:

- Force to 0 the integer part of Rm

- force at 1 the non integer part of the Rm value
So in case “n” is a prime it count 1, or 0 in case of non prime, so the sum from 1 to n will
return exactly the number of the primes.

Since the method start from 5 we have to add 2 to remember of:
2= prime and 3= prime, missed starting from 5:

Pi) =3 [|a] | )+] +2

n=>

That works as follow: (and where 1/3 pull decimal to 1 in case n is the prime 2 )

[(n-1)! (n-1)!
T = Y, [int [(LT.]— e[ L2 41734+ 2
n=5 I"‘--._.--.——-w-'—-.—--_--""l
This return: O.XXX if n1s a prime
0if n is a non prime
———— it J—
This return: 1 if n is a prime

0 if n is a non prime

——

This return the number of primes between (0 and P

(c) Stefano Maruelli www. marvelli.com/primes.htm
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3- How to find the next prime:

With the similar method it’s possible to answer at the question:

If, for example be Pi(a) = 31 is a known prime, witch is the next prime ?
The process is the same:

- calculate the position “i” of the known “Pi” with the method (2) :

so Pos(31) =i than Pos(Pi+1) = (i +1)

- than knowing that the new position (i+1) will be “easy” to - calculate the relative prime

One of the possible the tricks is:

- Knowing that P * 0 = 0 find a way to force at zero any number that has a position dif-
ferent from (a+1)

so first step is to calculate:

|J

E i [[:(ni-llpf)_Im((n;ll:,r-]

X o Int | 2=

+ (13| +2

N = unknown position of the prime JT(x)
i = position of the known Pi prime number
(e} Stefano Maruelll www.maruelll.comfprimes. htm
This give as result:

-0ifn < P(i+1) - 1 if n = P(i+1)

-Kifn = P(i+K)

So we have to find a tricks that gives 0 or 1 still if n = P(i+K) and avoid the indetermi-
nate form 0/0.

For example we know that b! = 1 still if b = 0 so: int( b/b! ) avoid the form 0/0

And return 1 if b=1 since if b =1 also b! = 1! = 1. So we use the:
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r X e INt i[lm{“m;}l I!]_lllt{':n'[jl '!]] +m3;})+ o) |
i+1
Int : — |
% o It Z(Intl[(':n;lHJ—imlm;JJ HUS]J}”
\ 1+1 |

(C) STEFANO MARUELLI www.maruelli.com/primes.htm

This give as result:
-0ifn <> P(i+1)
- 1ifn = P(i+1)

So to make it working itself we can put this trick into a Sum that works from known lim-
its where Pi(i+1) will be for sure present.

For example lower limit is: P(i)+1 and upper is: 2* Pi (as already proven see wikipedia)
Of course the tricks works with the upper limit till infinite, but has no sense.

So the “final trick” to have the P(i+1) knowing Pi is:

>

£

)

+2

[I_llf'i [I‘ﬂ—l!]—hiﬁ.
RAED \

k

(m 1-!‘1]+ 1."3}
n i

I.:lt«i |:iir'.ll—'!t—1n11%]l'!]l+]f3j]+3

Tt

2*Pi

M+ =) X. Int
n=>5

(n-131%
nf

(=131 . ]
- |
T TR | 1

i[n[[
it | —=A

l
+ 173} +2
I |

+1

1

(C) STEFANO MARUELLI www.maruelli.com/primes.htm

All that works as a very slow computer program, so has no sense for make a real calcula-
tion, but can give you an idea of what make Primes soo hard to be discovered.

So is necessary to “process” all the numbers from 5 to X each time, and for several times. .. )

But we cannot say longer that “is impossible to find a formula to calculate the next prime”.
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And finally we hazard to say that seems now more probable that there will not be an ab-
solutely easy function that feet all primes.

Of course there are other more faster algorithm to find primes (for example Eartostene
method) but, in my opinion, they will not give a “sense” of how prime are made as Wilkin-
son theorem (and what follow from it).

There is non official formula discovered in 1964 that involves sin(x) and Integer operator
too.

4- My final concerning on: I try to go over saying that is more clear now why complex
numbers can well fit the primes calculation:

complex numbers, as primes, has 2 non connected “parts”:

the real one and the complex,

as prime can be connected to a number z = :_2" that has

an integer part, that is common to a non primes numbers,

and a non integer part that is unique and non present in non primes numbers.

(c) Stefano Maruelli
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You can find animated Gif, upgrade and other info at my webpage:

http:/ /shoppc.maruelli.com/prime-study.htm

References:

There is no reference for what I invented, for all the Rest is standard Math so you can find
reference elsewhere on the web / books /e-books.

The most related paper I've found is:

Title: Using the Finite Difference Calculus to Sum Powers of Integers

Author: Lee Zia Reviewed work

Source: The College Mathematics Journal, Vol. 22, No. 4 (Sep., 1991), pp. 294-300
Published by: Mathematical Association of America Stable
http://www.jstor.org/stable /2686229

The document is interesting, require a little higher Math skill, and introduce same concept
of "finite differences" you’ll find here, but in a more general way. Unfortunately the arti-
cle stops when the thinks become interesting, so I hope to give to reader some more detail
and info on the telescopic sum properties.
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