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I just discover in feb-2018 that what I've called Gnomons, are known as Nexus
Numbers or forward di�erence, backward di�erence etc... And the use of solv-
ing such problems (typically Integrals or Sum with an in�nite number of Step)
was called Umbral Calculus. But I hope will be clear after reading all the 2
Volumes, I was gone as deep as possible inside of each problem, discovering
what was not yet fully investigated

I'm for so rewriting all my paper using the std. notation, where it is necessary / useful /
possible.

From the previous public version of this work you will �nd several new chapters and new
Tables, to prove my work is genuine and I hope, still interesting and new.

Reference to the "o�cial" known math can be found at:

http://mathworld.wolfram.com/ForwardDi�erence.html

http://mathworld.wolfram.com/UmbralCalculus.html

Being free from what is known and what none, I was free to discover some new things seems
not jet know.
My simple point of view will not be present in books that are considered as milestone for
this �eld of Math like:

E.T. WHITTAKER and GIULIA ROBINSON: CALCULUS OF OBSERVATIONS

Abramowitz, M. and Stegun, I. A. (Eds.). "Di�erences." �25.1 in Handbook of Mathemat-
ical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York:
Dover, pp. 877-878, 1972.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press,
pp. 429-515, 1987.

Boole, G. and Moulton, J. F. A Treatise on the Calculus of Finite Di�erences, 2nd rev. ed.
New York: Dover, 1960.

Conway, J. H. and Guy, R. K. "Newton's Useful Little Formula." In The Book of Num-
bers. New York: Springer-Verlag, pp. 81-83, 1996.

Fornberg, B. "Calculation of Weights in Finite Di�erence Formulas." SIAM Rev. 40, 685-
691, 1998.

Iyanaga, S. and Kawada, Y. (Eds.). "Interpolation." Appendix A, Table 21 in Encyclope-
dic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1482-1483, 1980.

Jordan, C. Calculus of Finite Di�erences, 3rd ed. New York: Chelsea, 1965.

Levy, H. and Lessman, F. Finite Di�erence Equations. New York: Dover, 1992.

Milne-Thomson, L. M. The Calculus of Finite Di�erences. London: Macmillan, 1951.
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Note for beginners:
- To refresh the knowledge on Sum's Rules, you can read Appendix 1

You can �nd animated Gif, upgrade and other info at my webpage:

http://shoppc.maruelli.com/two-hand-clock.htm

http://shoppc.maruelli.com/two-hand-clock/MARUELLI-TWO-HAND-CLOCK-ANI.gif

To Send your comments to the Author use the email: robotec2@netsurf.it

http://shoppc.maruelli.com/two-hand-clock.htm
http://shoppc.maruelli.com/two-hand-clock/MARUELLI-TWO-HAND-CLOCK-ANI.gif
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Abstract:

This paper represent my investigation, from 2008, in Sums, Power's properties and related
problems.

The core of the work is a consequence of the Telescoping Sum Property, that allow us to
square all the derivative of the functions Y = Xn, via a Sum of Rectangular Columns
called Gnomons.

Year by years my math skill with (and without) this new toys rise, so each time I have to
return to the beginning of the story to rewrite all.

I'll present here Numbers and Sums in a New Vest that will take us to Limits and Inte-
grals in a simple way, similar to the known Riemann Integral one, that probably Fermat
has discover too.

A new simple Two-Hand-Clock shows how this Additive Modular Algebra works, and gives
the name to this paper: I've called this: Complicate Modulus Algebra. It involves ComplicateNumbers
that can be connected to the Set theory concept of Ordinal Numbers.

The �rst goal was to have a powerful instrument to attack the Power problems like Fermat
and Beal, that I �nally relegated to the Vol.2 to be sure all the basic concept was fully
clear (and errors free as possible).

I discover that the representation of Rational and Natural numbers just via Complicate
Numbers, is reductive, since it is also possible to represent Irrationals, so once again, all
the paper was rewritten.

As minor consequence of the discover of the Complicate Numbers is a simple algorithm to
extract the n-th root from any Number P (also by hands). Some simple relation, like the
one between xn and n! will be shown too.

Il the Volume, A, B, C are usually Integers. n is used to de�ne the exponent of the Y =
Xn functions we consider in this volume, so when we talk of derivative we refer to: Y ′ =
nXn−1, and when we talk of "All the derivative" we mean: Y ′, Y ′′, Y ′′′etc... in general till
the "signi�cant one" that is for us the last depending by X (so the linear one so the last it
is non a Constant).

Since I'll refer all to the Cartesian Plane, instead of using the index i we will use X and
I'll show how this simple trick will open a new door in the investigation of Power propri-
eties.

In the Appendix 1 I summarize All the known Sum properties, and some trick can be done
using this Sum properties.

In the Vol.2 I'll investigate in some very di�cult Number Theory problems involving Power
of integers like Fermat's The Last and the Beal conjecture, and I'll show how to approach
to Riemann's zeros using Ordinal Numbers.
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The level of the presentation is for undergraduate students so I several time repeat the
concepts also using pictures.

Stefano Maruelli

Montalto Dora, Noth West Italy - From 01-08-2008 so far
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Chapt.1: Modular Algebra vs Complicate Modulus Algebra'

Introduction: Classic Modular Algebra

In Classic Modular Algebra we cut the salami in slices of same thickness, and we have just
two case:

a) P = K ∗m+ 0 or

b) P = K ∗m + (Rest ̸= 0),

and we don't care about the number of slice we cut, but just if we have or not a Rest and
how Big it is. And then we make concerning on the Class of the Rest, and we talk of Con-
gruences to solve our problems (etc.).

My question, born in a brainstorming session with my wife (wile pushing the car with my
little new son) was: Is it possible to think to a di�erent, more useful way to (always or in
certain case) cut the Salami ?

The answer I found very quickly is YES: instead of cutting the Salami with same thickness
slice, we cut it with Rising Slices following an useful Function I've called COMPLICATE
MODULUS.

The result is that we have now in the hands a measurable collection of rising Integer Parts
and (in case) a Rest. The advantages respect to the classic modular algebra are:

1- We Always have back exactly the number we put in, so a Weighted Zeros that told us
How Many Cut we did, plus a Rest (in case).

It means that we can distinguish from the �rst, the second or the n.th slice (zero) we are
talking of, and this will be very useful, and let (as the case we present here), intact the bi-
jection also with the Real, Rational and/or Integer Numbers we have in the hands.

2- Once we �x the n − th power of our interest we, at the same time, �x the COMPLI-
CATE MODULUS, I call here Mn so the Class of Rest=0 shows us a Special Number of
our interest is an n-th Power (of an Integer at the moment).

Day by day from that August 2008, new interesting aspect of this initial idea was discov-
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ered and it seems there is no end in new interesting properties and /or new problems /
theorems.

Al starts from this simple table involves Newton's develop and what I later discover are
called Nexus Numbers, that are all the recursive numbers we can obtain starting from plot-
ting integers and it's powers. In the following example Squares and Cubes:

Etc....



12

De�nition of the Complicate Modulus Algebra

All born from this simple rule:

Square of Integers as Sum of Odds

It's well known that a square of an Integer p, is equal to the sum of the �rst p Odds (for
the Telescoping Sum Property):

a2 =
a∑

i=1

(2i− 1)

The proof it's very easy developing the Sum we have:

a∑
i=1

(2i− 1) = a2 − (a− 1)2 + (a− 1)2 − (a− 2)2 + (a− 2)2 − ...+ 1− 1 = a2

So for example a = 5 ; a2 = 1 + 3 + 5 + 7 + 9 = 25

This simply known rule suggest me a new branch of Modular Arithmetic and Set Theory,
I've called COMPLICATE MODULUS ALGEBRA.

Complicate Modulus Algebra Idea

The above property suggest to me that this kind of division of the Squares can be taken
as example of a new kind of Modular Algebra where instead of a Fixed Integer Divisor m,
there is a Function that de�ne the thickness of each following slice.

I'll present here the case where this function is a known continuous rising function, coming
from the Telescoping Sum property for Power of Integers (but will also hold for Rational,
and, at the limit, for the Reals) that produce each time larger and large slices.

So from the easy known rule for Squares (n = 2):

a2 =
a∑

X=1

(2X − 1)

We can see the Complicate Modulus Mn = M2 where the slice's thickness linearly rise fol-
lowing the function: M2 = (2X − 1)

As example, in the following picture How to Cut a Salami of Length P ∈ N in the case
we take the Square complicate Modulus, so n = 2 ; M2 = (2X − 1). To let things more
clear we will call p also the Integer Root of the Generic Number P we are studying. Or:
p = ⌊(P 1/n)⌋
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As we can see we can distinguish 2 case:

a) P is a perfect Square, so we have no Rest, or

b) P is not a perfect Square, than we have a Rest.

We can also see that for n = 2, only, due to the linearity of the �rst derivative, is possible
to have the same result p2 using another Complicate Modulus, I call M2,X+1 = (2x + 1),
but at the condition that:

- We shift the Lower limit from 1 to 0:

- We shift the Upper Limit FROM a to p− 1, thanks to the Sum properties we can write:

P = p2 =

p∑
X=1

(2X − 1) =

p−1∑
X=0

(2X + 1)
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More in general, this shifting Rule is true for any m ∈ N+ (in the next chapters the gen-
eral rule):

p2 =

p∑
X=1

(2X − 1) =

p−m∑
X=1−m

(2X − 1 + 2m) =

p−m∑
X=1−m

(2(X +m)− 1)

So can now generalize the formula for our COMPLICATE MODULUS using

the General Formula for n-th Power written trough the Telescoping Sum:

pn =

p∑
X=1

(Xn − (X − 1)n)

Where I've called the function de�ning the Terms of the Sum (coming from the Binomial
Develop): Mn the COMPLICATE MODULUS

Mn = (Xn − (X − 1)n)

Now we can generalize to All Numbers, representing (for example) the Natural, called P ,
Modulus Mn, �xing n as we need or prefer, as:

P = pMn +Rest

having a Rest = 0 in case P = pn and Rest ̸= 0 in ALL the other case.

With this new Algebra we have back more information than the Classic Modular one since
this preserve the bijection between integers and the Complicate Modulus Numbers. And
I'll show how we can go over in Q and R under certain conditions.

Note: Complicate Numbers vs Complex Number

There is a big di�erence between a Real Complicate Numbers that is an element of R, so
a point on a one-dimensional number line, that can be expressed under my conditions on
a two-dimensional real plane and a Complex Number that is an element of C and that can
be represented just on a two-dimensional complex plane, since the Rest, vice versa from
the Imaginary Part of the Complex, strictly depends on what we choose as Integer Root.

It means that Rest and Integer Root are connected with a sort of Gear, while this doesn't,
usually, happen in a Complex Number, except if we �x a Relation between the Imaginary
part, and the Real one.
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Complicate Numbers as Ordinal Number

In late '900 the ZFC set theory jumps on the math scenario adding several new concepts
on of those is the Ordinal Number.

I'll introduce here the Ordinal Number concept without saying more on that, but we use
them in the Vol.2 to prove Fermat the Last. At the moment, it's just necessary to know
that:

Here I call the Ordinal Number Mn = (Xn − (X − 1)n) the Complicate Modulus since
we can use it to represent any Natural Number as Sum of its Greatest Integer n-th Root,
plus an Integer Rest. In case we are talking of Squares we can (usually) write:

P= (Integer n-th Root)n + Rest or using the proper Math Floor Brace ⌊...⌋ Symbols (ex.
n = 2):

P =
⌊√

P
⌋2

+

(
P −

⌊√
P
⌋2)

= ⌊
√
P ⌋Mn +Rest

And more in general:

P = pMn + (P − pn)

So we have a bijection from N → M⋉, where M⋉ is the Set of this Complicate Numbers,
base n we have chosen, as shown for example in the next Table:

Table 1: Naturals rewritten via M2 = 2X − 1 so as Square plus Rest
X M2 Rest
1 1 0 = 12 + 0 = 1M2 + 0
2 1 1 = 12 + 1 = 1M2 + 1
3 1 2 = 12 + 2 = 1M2 + 2
4 2 0 = 22 + 0 = 2M2 + 0
5 2 1 = 22 + 1 = 2M2 + 1
6 2 2 = 22 + 2 = 2M2 + 2
7 2 3 = 22 + 3 = 2M2 + 3
8 2 4 = 22 + 4 = 2M2 + 4
9 3 0 = 32 + 0 = 3M2 + 0
10 3 1 = 32 + 1 = 3M2 + 1
11 3 2 = 32 + 2 = 3M2 + 2
12 ... ... ... ...

Here I'll call the i− esim Square Gnomon the i− th value it will assume M2, so:

M2,i = (2X − 1)X=i = 2i− 1

So it's similar to the well known Modular Arithmetic, where Squares just, are our Zeros,
in fact:

If and only If P ∈ N+;P = p2 then we have Rest = 0,
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As I'll present in the Chapt.4, the big di�erence with the Old Modular form, is that now
we have a New Clock that Shows us the Right Hour All Day Round, and moreover, it shows
us exactly when our Number P is a certain n-th Power, we decide, of an Integer p, or not.
So, for example, there is no longer confusion like between 12 and 24 that are indistinguish-
able modulo 2, and numbers (squares for examples) 1, 4, 9, 16...x2, will be always in evi-
dence to the observer, for example, still if randomly written in a list of integers.

Another example of the bijection in case n = 3

Table 2: Naturals rewritten via M3 = 3X2 − 3X + 1 so as Cube plus Rest
X M3 Rest
1 1 0 = 13 + 0 = 1M3 + 0
2 1 1 = 13 + 1 = 1M3 + 1
3 1 2 = 13 + 2 = 1M3 + 2
4 2 0 = 13 + 3 = 1M3 + 3
5 2 1 = 13 + 4 = 1M3 + 4
6 2 2 = 13 + 5 = 1M3 + 5
7 2 3 = 13 + 6 = 1M3 + 6
8 2 4 = 23 + 0 = 2M3 + 0
9 3 0 = 23 + 1 = 2M3 + 1
10 3 1 = 23 + 2 = 2M3 + 2
11 3 2 = 23 + 3 = 2M3 + 3
12 3 3 = 23 + 4 = 2M3 + 4
13 ... ... ... ...

So more in general, but not jet in the Most General Case, we present a Complicate Num-
ber as:

P ∈ R : P =
(
⌊P (1/n)⌋

)n
+Rest =

⌊P (1/n)⌋∑
X=1

Mn +Rest

Or in the new Complicate Modulus notation as:

P ∈ N or P ∈ Q or P ∈ R : P = pMn +Rest

As we will see in the next pages there is a more general series of De�nitions for a Compli-
cate Number.
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De�nition of a Complicate Numbers:

After presenting the Complicate Modulus Numbers in the "soft, informal" mode, is time
for a General De�nitions:

A Complicate Modulus Number P , (from now: Complicate Numbers, just) is a number
that can be expressed in the form:

P = pn +Rest

Where more in general than what presented in the previous pages:

(P , Rest, p) ∈ R

And of course p is often de�ned as:

p = ⌊(P 1/n)⌋

where for the non expert ⌊, ⌋ is the Floor operator that return the IntegerPartOf what
in the middle of this special Bracket. Often, since it is the most useful representation (so a
special case of Complicate Modulus Number representation, we will see later) but of course
p can also be any integer under the right conditions.
De�nition of what a Rest is:

The Rest is considered an often (not always) Positive Number, and trivially de�ned as:

Rest= P - p Mn

Where using a new notation that helps to understood we are talking of a Complicate Num-
ber, and considering that the Rest can be taken with a sign we decide, we can write:

P = pMn + /−Rest

As we will see in the next pages in CMA the Rest can assume a value that is Bigger than
the Power we are analyzing, so it will require some care working with it.
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So under a series of conditions I'll show better later, we can distinguish several Class of
Complicate Numbers:

1) Integer Complicate Numbers:

Is the most used and happen when:
(P , Rest , p) ∈ N ;

Another possible, sometimes useful, Class is:

2) Rational Complicate Numbers:

(P and/or Rest and/or p) ∈ Q

3) Real Complicate Numbers:

Is the widest class, and can be divided in:

3a) Real Complicate Integer Numbers:

(P , Rest) ∈ R ; p ∈ N;

3b) Real Complicate Rational Numbers:

(P , Rest) ∈ R ; p ∈ Q ;

3c) Real Complicate Number:

(P , Rest , p) ∈ R ;

And in each of the previous Class we can de�ne other 2 Sub-Classes depending on the Rest:

a) Reduced Complicate Modulus Number, is de�ned as above:

P ∈ R|P = pMn +Rest =
(
⌊P (1/n)⌋

)n
+Rest =

⌊P (1/n)⌋∑
x=1

Mn +Rest

Where (again) p = ⌊(P 1/n)⌋

So p is (usually) the Maximum Integer n-th Root of P (as de�ned by the Floor Brace op-
erator), and the Rest is the Minimum Rest we can have once we choose the desired n and
the Maximum Integer n-th Root p = pmax (in case we are working with what we de�ne a
Reduced Complicate Modulus Number)

The Rest for a Reduced Complicate Modulus Number, here representing an integer Inte-
ger P written as P = pn +Rest is for so bounded by the Rules:

Restmin = 0
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RestMax(P ) = Mn|x=pmax = [(pmax)
n − (pmax − 1)n]

So in words talking of Reduced Complicate Modulus Number, the RestMax, for so also the
generic Rest of such Reduced Complicate Modulus Number, are both strictly littlest than
the Next Power (p+ 1)n and of course also of the Next Gnomon Mn|x=p+1 value.

I've shown the case we choose an Integer Complicate Modulus, because it require more
concerning in the other case we will see later (there is also a Non Integer Complicate Mod-
ulus Algebra !)

We can also ask who is the Better Optimized choice for p and n to let the Rest be the
Absolute Minimum Rest, especially in the case P ∈ R, opens another branch of math
(I call it another Black Hole... since very wide, deep, and hard to be studied)

Similar cases are studied in Classic Math in Diophantine approximation and are known as
Roth's theorems (etc.).

From Wikipedia:

In mathematics, Roth's theorem is a fundamental result in Diophantine approximation to
algebraic numbers. It is of a qualitative type, stating that a given Algebraic Number α may
not have too many rational number approximations, that are -very good-. Over half a cen-
tury, the meaning of very good here was re�ned by a number of mathematicians, starting
with Joseph Liouville in 1844 and continuing with work of Axel Thue (1909), Carl Ludwig
Siegel (1921), Freeman Dyson (1947), and Klaus Roth (1955).

Where I remember: an Algebraic Number is any complex number that is a root of a non-
zero polynomial in one variable with rational coe�cients (or equivalently -by clearing denominators-
with integer coe�cients). All integers and rational numbers are algebraic, as are all roots
of integers. The same is not true for all real and complex numbers because they also in-
clude transcendental numbers such as π and e. Almost all real and complex numbers are
transcendental.

b) Non Reduced Complicate Modulus Numbers:

I hope is now clear we can write a number P as:

P ∈ R : P = pMn +Rest

Where we have two case (so we call the root a instead of p to distinguish it better):

1) a <
⌊
P (1/n)

⌋
, so the Rest is NOT the MinimumRest, so it is bounded in function of

how big is the a we have chosen.

2) Mn itself can be a NON Reduced Complicate Modulus, so, more in general it can be:

M(nr)n = [r(Xn)− r(X − 1)n]; (X,Mn) ∈ Q; (r, Rest) ∈ R

Where: r is a constant, for example, useful to better shows

Perfect Powers P = r ∗ an + 0
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In this Volume where I wanna show the basic of this Algebra, usually r = 1, but more
often while working on real problems is r ∈ N or r ∈ Q ).

I'll show more ahead in this Volume, and in the next Vol.2, that can be also r ∈ R under
certain conditions (for Fermat Last Theorem For example and in case we work with Irra-
tional Numbers), for example depending by Known Irrational Factors.

Where Rest: is the Rest, so what cannot be, or is not written trough the n-th power of
an, or its multiple r ∗ an.

In this class the Rest has larger bound is: Rest ≤ P

The trivial case: Rest = P is, of course, useless.

And where a is for so bounded by:

0 < a < ⌊(P 1/n)⌋ , a ∈ N

The most General De�nition for P ∈ Q and for P ∈ R will follows after we have made a
little tour on what we can do with this numbers.

De�nition of MR, the Set of the Real Complicate Numbers:

We can now give a name to the biggest Set of the (generic) Complicate Modulus Numbers
that, as already shown, will depend on the Complicate Modulus Mn or M(nr)nwe chose as
Base of our bijection. We will call:

Mn = the Set of Complicate Modulus Numbers base n

After the de�nitions I've already given is clear: MR = R

We, mostly, investigate in some Sub Set of MR, like N+ or Q+

As told We can also create an Imaginary Complicate Number (etc...), but this will not in-
vestigated here.

Some concerning on the Complicate Numbers:

- The fact that we can distinguish from Reduced and Non Reduced Complicate Numbers
will probably give some property I not jet investigate here, but I suspect it will be con-
nected to the Proof of the Beal Conjecture will follow in the next chapters.

- In Classic Modular Algebra the Class of Rest are an important part of that theory, while
here I've not jet investigated if some property of the Rest will be useful and where, still if
I'm quite sure "it will be somewhere" once well studied.

The most general Complex Complicate Modulus Number de�nition follows from the
above de�nitions and the classic de�nition of a Complex Number. I've not jet investigated
this �eld.
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I'll present hereafter how a Complicate Modulus Number behave during classic known op-
erations.

After that I'll present a nice easy way to show on a Cartesian plane who is a Reduced Com-
plicate Modulus Number (from here a Complicate Number) and its Gnomons.
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Fundamental Operations with Complicate Numbers:

For "classic" computation this numbers are not useful, in fact:

Sum of two Complicate Numbers:

Unfortunately the Sum for example: A = 5 = 2M2 + 1 and B = 11 = 3M2 + 2 cannot be
done so easy as to Sum the Integers A+ B = 5 + 11 = 16, because the Clock change Num-
ber of Division Each Turn, so the Rest and the Integer Root, cannot be simply summed
one by one, but we need to return each time to the Original Integer Numbers we are con-
sidering and then make the computation:

- We have to re-transform the Integer Root of A and the Integer Root of B in the corre-
spondent Powers (So in Natural Numbers):

2M2 + 3M2 = 4 + 9 = 13

Than we can Sum the Rests:

(1) + (2) = 3

Than we have the result:

A+B = (13) + (3) = 16

Than we can return to our M2 base:

A+B = (2M2 + 1) + (3M2 + 2) = (13) + (3) = 16 = 4M2 + 0

Di�erence of two Complicate Numbers:

The di�erence follows in the same way, so the Integer Root Part has to be transformed
again in a Natural Number:
Having for example: A = 5 = 2M2 + 1 ; B = 11 = 3M2 + 2 we have:

B − A = 11− 5 = 6 so to perform the subtraction: (3M2 + 2)− (2M2 + 1)

- We have to re-transform the Root into the Natural Numbers, then we can subtract:

3M2 − 2M2 = 9− 4 = 5

Than we can Subtract the two Rests (with sign, in case is negative):

(2)− (1) = 1

Than we have the result:

B − A = (5) + (1) = 6

And then we �nally transform 6 in a Complicate number base Squares, and we have our
result: (3M2 + 2)− (2M2 + 1) = (2M2 + 2)
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Interesting case in the Sum of Complicate Numbers:

We know that there can exist some triplets A,B,C for what:

A2 +B2 = C2

so for certain (A,B) happens that A2 +B2 ∈ N+n

But this is an exception to the general Rule for Summation of Complicate Numbers (so
also for Powers of Integers) that state that:

The Sum of two or more Complicate Numbers, having both Rest equal to Zero
is not, always, again a Complicate Numbers having Rest equal to Zero.

Fermat understood (and claim to have a proof) that it's true that: An + Bn <> Cn if
n > 2

I'll prove this result in the next Vol.2 using the property we will learn in this Volume (still
if till now all this can seems an useless complication, just).

We will see in the next chapters, when we present our Complicate Clock that there will be
another way to Sum the Complicate Numbers, involving a New Clock and the angles of
the Hands.

How to Divide a Complicate Numbers:

Having for example: B = 10 = 3M2 + 1 ; A = 2 = 1M2 + 1 we have:

B/A = 10/2 = 5 so: (3M2 + 1)/(1M2 + 1) = (2M2 + 1) = 5

- Where again we have to return A and B in N, make the division, than return the result
to the new Complicate Number.

So there is no sense to do this operation.
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How to multiply the Complicate Numbers: Rule is the same we use for Bi-

nomial Product, or Complex Numbers:

Having for example: A = 5 = 2M2 + 1 ; B = 11 = 3M2 + 2 we have:

A ·B = 5 · 11 = 55 so: (2M2 + 1) · (3M2 + 2) = 55

- For the Integer Root Parts we can make the direct multiplication, but we have to return
in N:
ΠIntRoot = (2M2) · (3M2) = 6M2 = 36

and Both the Rests we can make the direct multiplication:

ΠRest = (1) · (2) = 2

- While We have to re-transform in the Natural Numbers for the Mixed Products:

ΠMix1 = (2M2) · (2) = 4 · (2) = 8

ΠMix2 = (3M2) · (1) = 9 · (1) = 9

Result = ΠIntRoot +ΠRest +ΠMix1 +ΠMix2 = 36 + 2 + 8 + 9 = 55

A ·B = (2M2 + 1) · (3M2 + 2) = 7M2 + 6

The Product seems again an useless work, but suggest us that there are 3 types of Compli-
cate Numbers:

- Pure Powers: p = An = aMn

- General Complicate Numbers

p = aMn +Rest

That are able to cover N, but nobody can deny us to use also:

- Multiple of Pure powers: m · An = m · aMn

This will becomes useful to investigate on Fermat's Last Theorem that will state that there
cannot be a solution for n > 2 in Nn to:

Cn = An +Bn =
A∑
1

Mn +
B∑
1

Mn

So, thanks to the Sum properties, it can be written as this symmetric formulation:

Cn = 2An +∆ and /or

Cn = 2Bn −∆ with Delta =
∑B

A+1Mn

Where is clear we need to investigate the curve y = 2xn via a[2Mn] Complicate Modulus.
(See Vol.2: Fermat the Last Proof)
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Chapt.2: Complicate Modulus Algebra on the Cartesian Plane:

Remembering what known from Classic Calculus, so that the value of the abscissa on an
integrable function (here a parabola) is equal to the area of it's derivative till it's Abscissa:

As seen in the most simple example for Square, the Complicate Modulus M2 = (2x − 1)
produce odd numbers (1, 3, 5, 7..., 2i − 1) that can be represented on a Cartesian plane in
the form of Rectangular Areas called from now Gnomons de�ned (till a more general
de�nition will be given in the next chapters) by:

Base=1 (�xed value) : Height= M2 = (2X − 1)

Where the i-th Gnomon's height is M2,i = (2i− 1).

To well represent the Gnomons on the Cartesian plane, and to show it is connected to the
area of all the derivative of Y = Xn I need to change the Label's Index, from i to x since i
becomes, as told, the i-esim Gnomon we are talking of :

A2 =
A∑

X=1

(2X − 1)

I'll also use the uppercase A from now on, since this work started in this way in 2008, from
the Fermat's A,B,C letters.
This Columns are the key of all my work. Here on the graph you can see how the Gnomons
square the Linear First derivative Y ′ = 2X:
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In the following picture it is better shown the relation at the base of this formulation be-
tween: Sum of Gnomons and the Integral of the �rst derivative.

We know by the Integration method (or by the classic Triangular formula b ∗ h/2) that the
Triangular Area (Red Border) below the First derivative till A, is A2, but we can square
this Area also using the Rectangular columns called Gnomons (here in Grey).

This property can be extended to All Powers of Integers and to all the following (non �at)
derivative.

We need to de�ne few parameters on the picture to let be more clear what happens:
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Figure 1: Gnomons squaring the First Derivative, and the First Integer Derivative

The telescoping Sum property has a Geometric reason: Gnomons square the First Deriva-
tive, thanks to the property Missing Area = Exceeding one
- The function Y = Xn, in the case n = 2 has a linear derivative: y′ = 2x

- So it's possible to use the Gnomons (in Grey) to Square it,

At the condition that for each column of base xi − xi−1 ∈ N+

- the Exceeding yellow Area A+ between the �at roof of the Gnomon and the �rst deriva-
tive,

- is exactly equal to the Missing yellow one A−.

For Square Powers of Integers, each Gnomon has:

- an unitary Base = 1 (we can see later the base can be di�erent, under certain conditions,
without loosing this property)

- an Height that rises of a linear value that lies on what I'll call:

Linear Integer derivative: y′i = 2x− 1, so 1, 3, 5...(2xi− 1)

But we have to go deeper now to investigate all the properties of this new subject.
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Figure 2: Gnomons squaring the First Derivative because Missing Area = Exceeding one

For n = 2 the derivative is linear, so it's clear what happens:

- it cuts the Roof of the rectangular Gnomons exactly in the middle,

so we have that for each Gnomon: r = q and Y r = Y q

So the Exceeding area A+ is exactly equal to the missing Area A−, not just in value, but
also in shape (triangular), so they have both the same Base, here 1/2 and the same Height,
here equal to Y r = Y q = 1.

It's also clear that the Gnomon's Roof given by the 2xi − 1 formula is always an integer
Value, for each Integer xi,

Calling: Balancing Point the intersection between the First derivative and the Gnomon's
Height. It has coordinate: (xmi, yi) where:

Xm,i =
Xi−1 + (Xi −Xi−1

2
=⇒ Xm,i ∈ Q

The fact the the Medium Point Xmi is equal to the Balancing Point BP is due to the Lin-
ear First derivative.

This is no longer true for n>2.
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Linear derivative and Pythagorean Triplets:

For n=2 just, if we de�ne two integer abscissa x1 = A, x2 = B, there will exist an in�nite
number of integer x3 = C for what:

A2 +B2 = C2

Pythagorean Triplets are possible because for n=2 the First derivative is Linear, so Xm =
BP , the Second derivative is constant equal to 2, then moving right of any integer δx the
area bellow the �rst derivative always grow of such constant value, and this assure that
any new area is a Trapezium that itself respect the property Xm = BP

I stop here the concerning regarding this property since it will be presented in the Vol.2
when I'll present several reason why Fermat the Last theorem can be proved right. I just
add here a trivial concerning:

Since the equality holds for those triplets, it will also holds the equation, with a ∈ R:

aA2 + aB2 = aC2

This will lead to known concerning about the p∗q factorization problem we will not discuss
now.

Calling P⋉ the Set of the n-th Powers of Integers, is In General true that with A,B, n In-
tegers:
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An +Bn /∈ P⋉

except for n = 2 where we know there exist an in�nite number of Pythagorean Triplets.

Due to the Telescoping Sum Property I'll show in the next pages that we can use the same
squaring process for higher n, so also when the derivative is a curve. Again we can square
the derivative with Gnomons because for any n ≤ 2, and for any Following derivative of
the curve of the type Y = aXn, the Exceeding area A+ will equate the Missing A− one.

This will happen still if the Exceeding / Missing Areas are no longer triangles, so they
have not just di�erent Bases and Heights, but also di�erent shapes since the Left Exceed-
ing Areas has a Concave Upper Border, while the right Missing one has a Convex Lower
Border (see picture in the next chapter). The telescoping Sum Property, for example will
not holds true for other curves, Hyperbola and Ellipsis, for example (as I'll show at the
end of this Vol.1).
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Chapt.3 Generalization: Powers as Sum of Gnomons:

Theorem1: from n = 2 it's possible to square all the following derivative of Y =
Xn using the Complicate Modulus Mn that full�t the area below the derivative
till an integer A, with Sum of Gnomons. in fact:

An =
A∑

x=1

[xn − (x− 1)n]

So in the same way we did for n = 2 we can describe any Power of an Integers using a
Sum of proper Ordinal Numbers I've called n-th Gnomons (as I told in the pre-face this
are known as the Nexus's Numbers, but my de�nition is more detailed as you will discover).
Where I de�ne:

Complicate Modulus n-th the operator Mn = [xn − (x− 1)n]

Gnomon each value: Mn,xi
= [xn − (x− 1)n]x=xi

= [xn
i − (xi − 1)n]

I remember is important to left x as variable, or index, and i as the i − th value of such
variable.

The proof it's simple since this comes from the Binomial develop and from the most known
Telescoping Sum property I already present here for n = 2. If we develop the sum we can
immediately see that:

An =

A∑
x=1

[xn − (x− 1)n] = An − (A− 1)n + (A− 1)n − (A− 2)n + (A− 2)n − ...+ 1− 1 = An

I call Mn =Complicate Modulus since it can be easily �gured out from the classic mod-
ular arithmetic seeing that

it can cut any integer P ∈ N+ with rising slices of dimension

Mn,x = (xn − (x− 1)n), Rest = 0

if, and only if P = An ; A ∈ N+ .
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Table 3: Naturals rewritten via M3 so as Cube plus Rest
x M3 Rest
1 1 0 = 13 + 0
2 1 1 = 13 + 1
3 1 2 = 13 + 2
4 2 0 = 13 + 3
5 2 1 = 13 + 4
6 2 2 = 13 + 5
7 2 3 = 13 + 6
8 2 4 = 23 + 0
9 3 0 = 23 + 1
10 3 1 = 23 + 2
11 3 2 = 23 + 3
12 3 3 = 23 + 4
13 3 4 = 23 + 5

This holds true for A and n integers, but I'll show we can go over in Q+ in the next pages.

As example for n = 3, the term Mn = [xn − (x− 1)n] becomes:

M3 = (3x2 − 3x+ 1)

To easily remember, keep Tartaglia's Terms for (x − 1)3, remove the �rst term and change
the sign of the other, so we have:

A3 =
A∑

x=1

(3x2 − 3x+ 1)

And so on for bigger n, following Tartaglia's triangle.

In the next pages I'll present again this case on a Cartesian Plane, hoping will be more
clear (if necessary) why I use in all this work x as Index instead of the classic mute index
m or i: in my representation it's, de-facto, the x coordinate on the Cartesian plane, and
calling it 'mute' has encouraged peoples to discard to investigate more on it.
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Complicate Modulus Algebra over X-Y Plane for n > 2:

What di�ers from n = 2 is that:

1) from n = 3 while continuous function Y = Xn and its Continuous derivative
Y ′ = nXn (and followings) are INVERTIBLE,

once we pass (n > 2) via the Integer derivative to the Integer Gnomons, we
abandoning CONTINUITY and we Loose INVERTIBLE property.

2) again the Exceeding Area A+ is equal to the Missing one A− for the Tele-
scoping Sum Property, and we can easy prove this.

3) Very important di�erence is that we LOSS, from n > 2 the same (triangu-
lar) Exceeding/Missing Area shape property, so they not just di�er by size of
the Bases and of the Heights,

- But they also have no longer the Same Shape at all, since the Left Missing
Area A− (Red one) has a Convex Lower Border, while the Right Exceeding A+

(Blue one) has a Concave Upper Border.

And we will be also cleat that since the curvature of the First derivative, becomes Lower
and Lower rising x (and or n) also the ratio r/q will change going closer and closer to 0.5
rising x and or n. Here one example on the picture where to distinguish the points I've
Scaled Lot x/y to see the Curvature is in the real picture x/y = 1 very close to a line also
for lower value of x and n.

Here the example of how a power Y = X3, can be represented squaring its derivative
Y ′ = 3X2 via Gnomons (Red Columns width=1), following what I call Complicate Modu-
lus Height (Black LINES):

We can for so represent a power of integer, i.e. 103

- as a point on the curve y = x3, or as an area bellow its �rst derivative, or

- as a Sum of Segments M3|x=i = 3x2 − 3x+ 1, for x from 1 to 10, that is also equal to the
Sum of the Areas of the Gnomons BASE = 1 and height:

M3,i = (3X2 − 3X + 1)X=i = 3i2 − 3i+ 1

Such Integer Gnomons always perfectly Square the derivative Y ′ = nXn−1 for any X ∈
N∗.

This means that respect to the derivative Y = 3X2 the Missing Area A− on the Left is
always Equal to the Exceeding Right one A+.

As the Telescoping Sum, the Balancing Property also works for all the Following deriva-
tive.
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An easy useful example of this property is given in the case n = 3 where the �rst deriva-
tive is y′ = 3x2 and where to �nd the balancing coordinate xm we have to solve the equa-
tion:

3X2
m = 3X2 − 3X + 1

As told all that works thanks to the Telescoping Sum Property.

The proof it's very easy developing the Sum (as made for n = 2) we have:

An =

A∑
X=1

(Xn − (X − 1)n) = An − (A− 1)n + (A− 1)n − (A− 2)n + (A− 2)n − ...+ 1− 1 = An

Here after I'll show as example also the case n = 5 where it's clear that:

In case n > 2 the derivative is a curve but the Balancing Property always holds.

Summarizing we prove that the Sum of Gnomons Base=1, height:

Mn = (Xn − (X − 1)n)

calculated from 1 to an integer A,

is equal, in area, to the area below the (here in blue) derivative y′ = nX(n−1) from 0 to A

I call the (here in green) continuous function Y ′
I = (Xn − (X − 1)n): the Integer deriva-

tive where it's clear it has nothing to do with the concept of the derivative since is a func-
tion that de�ne the Right Upper corner, so the Height of the each Gnomon.
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Telescoping Sum and The BALANCING POINT BP

All what I wrote till now is based on the Telescoping Sum Property, that can be seen as
the capability of the curve of the type y′ = nxn−1 to be squared with Gnomons, so having
a certain point, I've called the Balancing Point BP , that lies on the �rst derivative, and is
the one for what: The Missing Left (Red) Area (A−) will equate the Exceeding one (A+).

We �rst start to calculate the Abscissa Xm that satisfy this condition, then we must now
discover who is the BALANCING POINT BP , to prove it has Always IRRATIONAL
coordinate Xm,i if n > 2.

We aready know now that the Height Ym,i is the Integer (for now) Height of our Gnomons,
so it is: Ym,i = Mn,xi

that is, for example in the case n = 3 equal to: Y3,i = 3X2
i − 3Xi + 1
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How to calculate Xm,i:

To calculate xm,i we have to write and solve the equation:A+ = A− and we can distinguish
in two case: n = 2 so when the First Integer derivative y′ = 2X − 1 is linear, and n > 2, so
when the First Integer derivative y′ = (Xn − (X − 1)n) is a Curve.

For n > 2 the derivative is a curve, so we need to use the Integral to solve the Balancing
Rule.

A+ = A−

That becomes:

(Xm,i −Xi−1) ∗ ymi
−
∫ xm,i

xi−1

nxn−1 =

∫ xi

xm,i

nxn−1 − (xi − xm,i) ∗ ymi

Still if we know how to solve it, we need to make many other concerning on our Compli-
cate Modulus Algebra, before prove that Xm,i is always an Irrational if n > 2 and that will
be the goal of this �rst Vol.1.

After that we will have all the knowledge necessary to try to prove more complicate prob-
lems involving Power's od Integers, like Fermat the Last, but also of Rational.

We note that for n > 2 due to the Curved derivative, must be Xm ̸= Xi−1+Xi

2
so must be

r > q.
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But to prove Xm,i is always an Irrational if n > 2 I'll follow 2 ways, both will look in how
BP is geometrically �xed.

- the �rst one involve simple concerning on the relative position of BP respect to known
things: the Medium (or Center) Point MP ,

- the second one will show that we can pack Xm between Two Following Integers, and then
Between Two Following Rational depending by a factor 1/K, and then we continuous ab
in�nitum this process, so we can push to the Limit the divisor K,

and just at that point we will rise Xm, so it can be just an Irrational. But to do this we
need to show how we can play with Rational Gnomons, and this will require a new Chap-
ters hereafter.

This process is known as Dedekind Cut. It sound like an Axiom, but we will prove it.

For now what we can immediately see is:

- We discover that due to the Telescoping Sum Property, without making other concerning
than the one involving Integer Numbers and Proportional Areas, for any Parabolas Y =
aXn in any derivative (also the following) the Exceeding Area A+ will equate the Missing
one A−, ,

- But once we ask how much the value of such areas is the only way, for n > 2 to calculate
them is to go in�nitesimal and make the integral.



39

Comparison between Exceeding / Missing Areas A+
i = A−

i :

Is clear that while below a Linear derivative Y ′ = 2X following Exceeding/Missing Ar-
eas has always the same Area, independently by the Abscissa we choose, bellow a Curved
derivative y′ = nXn−1 with n > 2 there is an Ordinal Rule between Such Areas, that all
will converge to a Triangular Area once n → ∞.

Calling A+
i the i-esim Exceeding Area, and A−

i the i-esim Missing Area, below a curved
derivative will always hold true this list of relations:

1) A+
i = A−

i

2) A+
i+k < A−

i for any k >= 1 because going Right a Curved derivative becomes more
Steep and Flat, so the Exceeding Area of the Next Gnomon will be littlest than the Previ-
ous Missing one. For the same reason will be true that:

3) A−
i+k < A−

i for any k >= 1

4) A−
i+k < A−

i for any k >= 1

This property is in connection with the Fermat Last Theorem in a way will be explained
in the Vol.2.

Here is how Xm,i behave rising X, in the example n = 3:

As you can see Xm,i goes fast close to 0.5 and for higher n, due to the less curvature, we
know it goes faster and faster close to 0.5.
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The Scaling property: What will be very important to remember is that Scaling

on the Cartesian plane the representation of the curve Y = Xn in X, Y or X, Y leaves
unchanged the result.

We do not give here a proof since is very simple and evident that if the Telescoping Sum
Holds, then it Holds true independently by the scale factor X/Y we choose, so if we as-
sume the same scale for X, and Y or we stretch one of them.

And this holds true also if we scale for example X of an irrational value f.e.
√
2. And this

let us suspect we need to investigate more.
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Trapezoidal Gnomons:

To open another Graphical parenthesis, for those understood this method, will be proba-
bly clear at this point that nobody denied us to keep, instead of a Rectangular Gnomons
a Trapezoidal Gnomons, capable entirely cover the area bellow the derivative between two
integers.

In the case n > 2 the Trapezium has to mediate the curve between the selected points
as in the following picture. The equations bellow this new Gnomon is not included in this
work since just question of make some more concerning on how to equate the Exceeding
/ Missing Areas and because the most simple way to �nd it is to remember we already
de�ne a �at roof Gnomon so is enough to 'turn' the roof around its medium point sure
that in this way we holds the same area bellow the new non �at roof. Of course rotating
around the center of any angle the area of the Gnomons rest the same, but there is a spe-
cial angle for what the chain of roof becomes continuous, so it has interesting consequences
for those who loves to �nd who are those 'special' a′i = bi−1 and b′i = ai+1 numbers let the
chain.

While in the case the derivative is a Line the new Trapezoidal Gnomons can be exactly
equal to the derivative, also in shape.

Avoiding to re-make the trivial concerning on how to equate the Exceeding / Missing Ar-
eas, it has interesting consequences for those loves special numbers.

Here I'll present some case of interest, because the non trivial fact on what is possible to
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go on in the investigation is that the new Gnomon's Trapezoidal Roof is a Chain of Non
Disjoint Segments, so another "magic" property was discovered:

the di�erence of height between Y i on the derivative and the new eight a′i+i that �x the
point where the new Linear Gnomon's Roof Xi+1 starts, is exactly equal to the distance
between Y i and b′i so the point where the previous Gnomon's Linear Roof was stopped.

Here an example of Trapezoidal Gnomons Roof: the known values 1, 7, 19, 3x2 − 3x+ 1 can
be rebuild by trapezoid using the simple concept to have a triangular top that hold the
equality A+ = A−, and a rectangular base. New series of numbers was added in Oeis.org
by the author.
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A broken line de�ne an area that it's equal to the one bellow the derivative. Of course this
is not the only possible one.

In the next page the table of the Trapezoidal Gnomons n = 3, 4, 5, 6
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Several know sequence are hidden behind this new recursive formula to obtain the Trape-
zoidal Gnomons. The �rst interesting, for n = 3 is the sequence known as A032528: Con-
centric hexagonal numbers: �oor(3 ∗ n2/2).



46



47



48

For n=4, is the sequence known as A007588: Stella Octangula numbers: a(n) = n ∗ (2 ∗
n2 − 1).
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Chapt.4. A simple algorithm for �nding the n-th Root

To extract the n-th root of a number P we can make the inverse process, so a Recursive
Di�erence we can indicate with the Greek letter δ.

Once we chose the n-th Complicate Modulus we are interested in, for example n = 3, so
M3, we can have 2 main cases:

1) The recursive di�erence will give us back an (also called: n-th Power Zero)

2) The recursive di�erence will give us back an Integer plus a

if P = An here for example P = A3 = 27 than starting from P if we remove the following
Gnomons M3 = 3x2 − 3x + 1 starting from x = 1 we can make the n-th root (by hand) in
this simple way:

27− (3x2 − 3x+ 1)x=1 = 27− 1 = 26

26− (3x2 − 3x+ 1)x=2 = 26− 7 = 19

19− (3x2 − 3x+ 1)x=3 = 19− 19 = 0

So we can write 27 as: 27 = 3M3 + 0

This is a very slow algorithm to extract any n-th root also by hand, so it has no interest
for computation; but it's clear it can sieve each Integer (for now) Number P to have back
its Integer (or not) n-th root.

if P = An here for example P = 28 then starting from P if we remove the followings
Gnomons M3 = 3x2 − 3x+1 starting from x = 1 we can make the n-th root p (by hand) in
this simple way:

28− (3x2 − 3x+ 1)x=1 = 28− 1 = 27

27− (3x2 − 3x+ 1)x=2 = 27− 7 = 20

20− (3x2 − 3x+ 1)x=3 = 20− 19 = 1

So we can write 28 as: 28 = 3M3 + 1
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Each time we have a Rest we are sure that our integer P is not a Power of an integer.

As we will see in the next chapters we can say more in case we have a Rest

We can therefore use the right Complicate Modulus Mn for the n−th Root we desire and δ
symbol to indicate this Recursive Di�erence Process we will do, where P ∈ N is any num-
ber and the Integer Upper Limit p is also our Integer Unknown Root (so the variable since
it's the result we are looking for) :

So if:
P + δ

⌊P ⌋
x=1(x

n − (x− 1)n) = 0

Than P = pn; p ∈ N, so Rest = 0. Vice versa if:

P + δ
⌊P ⌋
x=1(x

n − (x− 1)n) > 0

Than P ̸= pn; p ∈ N, so we have a Rest = P − δ
⌊P ⌋
x=1(x

n − (x− 1)n)

As for Modular Algebra is possible to compare it to a One Hand clock, we have now all
the info to invent a new Two-Hand-Clock, much powerful than the old one. Going deeper
in this concept several new simple but interesting properties will be found (and I think
I've opened a new branch of math to young students not jet ready for Group theory / Ab-
stract Algebra.

I can imagine many of you will jump on the chair once, in a few pages, when I'll hack the
Sum Operator, but, again, you will see will be for a good reason.
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Chapt.5 The Two Hands Clock

Modular Algebra is based on the well known One-Hand-Clock and just let us know the
right hour for 1 second, two times each day.

Here I present my new Two-Hand-Clock, having a Digital Display that always show the
right hour, base the n-th Power n we decide:

The Two-Hand-Clock show us more information than the classic single hand. It display
unambiguously any Integer P as a Complicate Number, as the previous de�nition I gave.
For the moment I present how it shows the Reduced Integer Complicate Numbers:

P =
⌊
P 1/n

⌋n
+
(
P − ⌊P 1/n⌋

)n
The Two-Hand-Clock, for Integers has some special characteristics:

- A digital display that show the number P (I've called: Tote)

- 2 hands, for the moment we suppose moving not continuously, but jumping from a Refer-
ence Line to another:

- One short (Red) for the Hours, that show p the Integer Root of P

- One Long (blue) for the minutes, that here show the REST = R
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- A digital background able to shown the Reference Lines, that change each complete turns
of the short hand, and will be useful to �x the scale for 'analog showing' the two informa-
tion: the Integer Root p and the Rest R.

The number of the divisions (Reference Lines) rise each turn. It's the value of the Compli-
cate Modulus Mn calculated for the current Actual Integer Root p+ 1, value.

- A 2 digit display showing what n-th Power n we are using root; here in the previous pic-
ture, the Cubic one, so n = 3.

- To let more easy to read the position of the two hands, there are also over the clock two
Digital Numbers moving with the Hands:

- one Red showing the Integer Root p, and

- one Blue showing the value of the Rest R

Here again the picture:

You can �nd animated Gif, upgrade and other info at my web page:

http : //shoppc.maruelli.com/primestudy.htm

$http://shoppc.maruelli.com/prime_study.htm$
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We can also tabulate the Integer P , the Integer Root and the Rest, to graphically show
what happen to this value.

Here an example of how the 2 hands clock show P ∈ N in terms of an

IntegerSquareRoot and a Rest

Using the right Complicate Modulus Mn = (xn−(x−1)n) it's possible to show any P ∈ N+

Base any n-th Power we decide.

Will be interesting to think to a more evolved version where the two arrows moves contin-
uously as the standard clock, since in this way we can also show any P ∈ R.
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Investigating in the Properties of the Rest

Is time now to better investigate in the Properties of the Rest since is a well known branch
of math.

The Sign in front of the Rest:

First of all I assume till here that the Rest is Positive, while is clear that it can be also
Negative, in fact we can also make another bijection:

P = pM2 +Rest+ = (p+ 1)M2 +Rest− = (p+ 1)M2 − |Rest−|
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Reduced and Non Reduced Complicate Numbers

As told in the de�nitions what above presented suggest that, more in general, we can have
2 form of Complicate Numbers:

1- Reduced Form where the Rest is always bounded from 0 to Restmax ≤ Mn,i.

2- Non Reduced Form where the Rest < P .

As you understood I usually talk of the �rst type of Complicate Numbers

Analyzing the Rest

We know the Rest is not su�cient to de�ne exactly who our (reduced) Complicate Num-
ber is, but in the most simple case it can de�ne a Lower Bound. vice versa in another case
we can be non able to do some evaluation, because for example we are working with Un-
known Variables, that are just written as A, B, C or any other letter, just. In that case
the complicate Modulus Algebra will give it best result allowing us to make some more
deep concerning on the nature of such Rest, for example analyzing a Function that pro-
duce such rest (if possible). I will let this case for the next Volume since it is necessary,
before enter in such type of Complicate Modulus Analysis, to know all the characteristic
and behavior of the Complicate Modulus Numbers.

1) When is possible to �nd a Lower Bound:

Looking to the previous picture we can see that the Rest can be bigger than the Integer
Root A.

If, for some reason, we have a Complicate Number (for a known power n) where the Rest
is bigger than the n-th Power pn of the Integer Root p, than we Reduce it simply returning
it to be a classic Number P and then returning p to be:

p = ⌊P ⌋

and the Rest to be:

Rest = P − (⌊P ⌋)n = P − pn

There is another case when, for some reason, we know just the Rest of such Complicate
Number and we need to make an evaluation (for example in an inequality) of who can be
the Minimum Integer Root of our Complicate Number's Rest.

With a simple concerning we can be sure that it cannot be a Number less than this value:

Calling pmin the Minimum Integer Root (given by the Rest we are talking of), it can be
found considering that the Rest, for a Reduced Complicate Modulus Number, is always
packed between the Last Gnomon represent the unknown Number P for what it's Root is:

p = ⌊P ⌋
and the Next One, so it is always:
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Mn,p < Rest < Mn,p+1

Since:

Mn,p = (pn − (p− 1)n)

Or :

(pn − (p− 1)n) < Rest < ((p+ 1)n − (p)n)

So we have to solve the equation to have X = pmin :

(Xn − (X − 1)n)−Rest = 0

then we have to keep the Floor Value for X.
Here as example in the simplest case n = 2, so M2,pmin

= 2pmin − 1 so

pmin = ⌊(Rest+ 1)/2⌋

Example1: Rest = 40, n = 2

pmin = ⌊((40 + 1)/2)⌋ = 20

In fact the Last Gnomon is:

M2,20 = 2 ∗ 20− 1 = 39

And the Next one (is necessary to complete a Genuine Power of an Integer) is:

M2,21 = 2 ∗ 21− 1 = 41

So the Reduced Complicate Number having rest 39 can be just 20 since it is:

20M2 + 39 = 202 + 39 = 439



58

1) When is NOT possible to �nd a Lower Bound:

Another case live the Mathematician at work with no results for several hun-
dred years is when the Number is an Unknown Result of a function, so for
example the result of the simple equation:

A3 +B3 =?C3

where we ask also that (A,B,C, n) ∈ N+

So the question is: can be, for example, the Sum of two Cubic Powers, again
the Cube of an Integer ?

53 + 63 =?73

So with our notation:

(5M3 + 0) + (6M3+) =?(7M3 + 0)

This is Fermat Last Theorem, in the most simple non working case n = 3.

Fermat The Last Theorem ask the answer for any (A,B,C, n) ∈ N+.

The reply was one of the most hard problems of number Theory and has to
wait several hundred years before Lord A. Whiles gives his �nal proof that
just in case n = 2 we will have possible integer solutions. And the answer
was given using Abstract Algebra and studying the behavior of some very so-
phisticated Modular curves (semi stable elliptic curves).

My Complicate Modulus Algebra was build to try �nd a most easy reply to
this ancient problem on what will we return on in the next Vol.2. I would left
away from such proof any abstract concept since humans (or, minimum, all
as access to the simple math of Sum and Integrals) can understand why Fer-
mat's trick doesn't works for n > 2. Lot must be investigated before we'll
have in the hands all the weapons are necessary to rise our proof.
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Here an example of how the 2 hands clock show P = 26 in terms of Integer Cubic Root (2)
and Rest (18) It's possible to use it to show any P ∈ N∗ base any n-th power.

Here the clock runs, �nally showing the number 26 modulus M3:

It switch on and makes the �rst turn displaying 1, than it make another complete turn
showings 8

But while running his 3th turn, it stops before concluding it:

The minutes hand stops onto the 18th division, as result of the recursive di�erence:

26− (3x2 − 3x+ 1)x=1 = 26− 1 = 25

25− (3x2 − 3x+ 1)x=2 = 25− 7 = 18 = REST

Since at the next turn we will have:

18− (3x2 − 3x+ 1)x=3 = 18− 19 = −1

So the clock stops at the previous 2nd turn, leaving us a REST=18
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How the clock runs to show: 26 Modulus M3 or 261/3

Following this example it's possible to build-up all the n-th Clock we need to investigate if
our number P is, or not the genuine Power of an Integer, we are searching for.

Note: from n=3 if we make a movie while running following root extraction of rising num-
bers P , we will see the shortest hour hand show us bigger and bigger Integer Roots, but
due to the fact that the number of division of the clock rise each complete turn, it's angu-
lar movement, after it rise the maximum angular position of 2, it moves backwards to zero
while P is rising. So the angular position of 3,4,5 etc... respect to the Zero, moves closer
and closer to zero (the old 0-12 hours position on a classic known clock).

All that is a presentation of the �rst simple application of my Complicate Modulus Alge-
bra. I spent 8 years of hard works to go deep enough in this simple trick, to let it becomes
useful, so to let it work also with Rational, some Irrationals till in�nitesimal P .
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The Two-Hand-Clock with n = 2
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Figure 3: For n = 2 the movements of the two hands are clockwise and feel intuitive, while we will see it
will be not fromn = 3. The Hour's Hand will arrive at the limit for P = ∞ at a π position (6 o'clock).
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The Two-Hand-Clock with n = 3
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Figure 4: For n = 3, as you can see after reaching 7 the movements of the Rest's Hand is clockwise and
feel intuitive while the movements of the Hour's Hand (Integer Root) is clockwise just till 1n (and feel in-
tuitive), while when it rise 2n it start to moves counter clock wise since the number of divisions MH rise
faster that the new angle the hand has to do.



65

Hour's Hand Position in the case n = 2, and n = 3

Figure 5: In the upper Blue graph the Position of the Hour's Hand in the case n = 2: the angle rise con-
tinuously and has 180 as limit. While in the case n > 3 the angle decrease (and has 0 as limit) due to the
fastest increment of the number of the division for the Minute's Hand that will show the Rest.

Angle formula in the case n = 2:

Hour (Integer Root) H = ⌊(P )1/2⌋
minute (Rest) m = P − (⌊(P )1/2⌋)2

Number of Division at the current hour: MH = 2x− 1 = 2 ∗ (H + 1)− 1

Angle = (360/MH) ∗H

Example: n = 2 ; P = 15

H = ⌊(P )1/2⌋ = ⌊(15)1/2⌋ = 3

m = P − ⌊(P )1/2⌋ = 15− (⌊(P )1/2⌋)2 = 6

MH = 2 ∗ (H + 1)− 1 = 2 ∗ (3 + 1)− 1 = 7

Angle = (360/MH) ∗H = (360/7) ∗ 3 = 154.29...
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Angle formula in the case n = 3:

Use the previous changing n = 3 and remembering that the new formula for MH is:

MH = 3x2 − 3x+ 1 = 3 ∗ (H + 1)2 − 3 ∗ (H + 1) + 1

Angle = (360/MH) ∗H = ...

Of course we can now investigate in a more sophisticated clock where the Hours Hand moves
continuously, so it means it always return, also alone, the exact value of the n-th root of
P .

Unfortunately this doesn't help us to have an answer if An + Bn = Cn has a solution for
C ∈ N.
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A little Physics excursus:

I cannot resist to make a little Physics excursus, since

leaving the Square as Modulo, plus Rest this looks like the electron's jump mode, if we
imagine that the Blue line is the actual orbit and the Red one the extra given energy. This
explain why we must continuous to give energy to see a new jump, but that if we not give
enough nothing change in the orbit.

It's like a sort of an internal spring reaction: till we don't brake the spring it continuous
to suck energy and nothing happen, but once it brakes, we see the jump. Of course there
is nothing that brakes, what probably happen is that the electron such energy rising one
parameter actually I don't know exactly how to call (twisting or else) that imply a jump
just when rise his maximum possible value.
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Nexus Number's Formula

Once the Integer derivative concept was understood, it is clear we can apply it recursively
too, having the Second, the Third and the n-th derivative too.

The Nexus Numbers are know to be Numbers coming from a recursive di�erence. Here
again the remainder to the ones coming from Squares and Cubes:

but will be now clear that they are also coming from an explicit general formula depends
on the Binomial coe�cients too, so on the Tartaglia's triangle:

Be the First Integer derivative equal to Y ′
I = Mn = (Xn − (X − 1)n) then we can de�ne the

second derivative of a parabolas of the type Y = aXn as:

Y ′′
I = Y ′′

I (X = i+ 1)− Y ′′
I (X = i)

that is quite boring to be calculated each time if one do not observe (and easily prove)
that the result is:

Y ′′
I = Y ′

I (X = i+ 1)− Y ′
I (X = i) = (Xn − 2(X − 1)n + (X − 2)n)

and for so the 3rd Integer derivative will be:

Y ′′′
I = Y ′′

I (X = i+ 1)− Y ′′
I (X = i) = (Xn − 3(X − 1)n + 3(X − 2)n − (X − 3)n)
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where the Triangular Structure know under many names one of the most famous in Italy
is Tartaglia's coe�cients (for (X − 1)n), emerges:

So we can apply such Derivative Concept to any Polynomial of the type: Y = axn +
bXn−1..... and of course also think what the imposition of Y ′

I = 0 means in what I de�ne
the Exact Calculus, will produce here an apparently non so much interesting result is the
abscissa of the second of two consecutive points having the same height.

But going ahead on my this paper I hope will rest clear in your mind that we can pro-
duce more interesting result using the Exact Calculus in the proper way, as we did for the
known classic one.
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Now keeping Known Calculus as example, we can search for the two Following Integer Or-
dinates having the same value, simply equating to zero the �rst (at this point) Integer deriva-
tive of an Integer coe�cient polynomial:

Be: Y = X3 − 5X2 + 6X − 1 then the �rst integer derivative will be (applying the rule
Y ′ = a(Xn − (X − 1)n) each term):

Y ′ = (X3−(X−1)3−5∗(X2−(X−1)2)+6 = 3X3−3X+1−5∗(2X−1)+6 = 3x2−13x+12

Then equating Y ′ = 0 we have:

3x2 − 13x+ 12 = 0;x1 = 4/3;x2 = 3

Since we are talking of Integer Points just, we keep just X=3 then we know now that for
X = 2 and X = 3 the function has the same Ordinate Y = −1, means we have Two
following points having the same Ordinate.
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Chapt.6 STEP SUM: forcing the Sum operator to work with a Scaled
Rational Index

Since we need to prove what in the previous chapters I've called the "In�nite Descent"
trough the Convergent Series it's time to hack the Sum Operator. And this will be the
MAIN POINT of All This WORK.

Is known it is possible to indicate bellow the Sum operator not just a rising Index i equal
to an integer, but also an Index i selected by a Function that de�ne just some Special Value
that has to be Summed. Most common is the choice of Prime Number only, or just Odd or
Even, etc... But always i was considered to be an Integer mute variable just.

And this was a Big Mistake because lie us blind for several hundred years !

what is known is that the Step = 1 is the integer di�erence between two following Integers
having Index = i and i+ 1 for example, so it is:

Step = (i+ 1)− (i) = 1,

But it's well known, for example, that is possible to Sum Odds just, or Primes just, or any
other value de�ned by a pre-de�ned Function it will select Integer Index values i ∈ N just.
So the value of the Step can be no longer equal to the Index is just an integer Number in-
dicate where the pointer is, from Lower to Upper Limit.



72

Moreover it is possible, under conditions will follows, in the special case of Telescoping
Sums (only!), so for example in case of Parables, so in the case the result o the Sum is
Y = Xn. We will take for example the Sum:

A2 =
A∑

X=1

(2X − 1);A ∈ N+

I start with the most simple case: Step = Rational Step = 1/K with K ∈ N+

Remembering we want to hold the same result A2 just unsinge a more �ne Step Sum, hav-
ing Step 1/K, now we can introduce a Scale Factor 1/K2 and a factor K”, so we divide all
the terms of our Sum by K2 , but remembering that we want to left unchanged the result,
so for the known Sum's Rules we have to multiply the Upper Limit by K so we have:

A2 =
A2

K2
∗K2 =

A∗K∑
X=1

(
2X

K2
− 1

K2

)

Pls see the Appendix.1 to see the collection of Known Sum properties to refresh some of
their properties, if necessary.

Now, pls be open mind and remember what is often done to solve some integral: we make
an exchange of variable, so we can call: x = X/K , so changing X with X = x ∗ K, if we
respect the following conditions:

a) if and only if a = A/K so if K is a Factor of A, so perfectly divide the Upper Limit A

- the Upper Limit A/K becomes: (A/K) ∗K = A (with K ∈ N+ )

- the Lower Limit X = 1 becomes: x = 1/K (a Rational for now) so:

A2 =

(A/K)∗K∑
x=1/K

(
2(x ∗K)

K2
− 1

K2

)

Now we can simplify to have our new Step Sum, that moves of a quantity depends on the
original Integer Index i = 1, 2, 3, 4.... but of a new scaled value we call Step 1/K from
1/K to A that is now allowed to be A = P/K so A ∈ Q+, so the Index x will be x =
1/K, 2/K, 3/K....A:

A2 =
A∑

x=1/K

(
2x

K
− 1

K2

)

Where we start with: A ∈ N but can be now also A ∈ Q
From this picture it's clear what happens: we are just scaling the abscissa (K=2 in that
case), so we divide in 2 Each Base of Each Gnomon and, as consequence, we have to mod-
ify each Height respecting the rule: Missing Area equal to the Exceeding one.
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I repeat it's intuitive for n = 2 since the Linear derivative y = 2x helps us to see that for
each Gnomon one Red Square (1/2 ∗ 1/2) has to jump right-up on the new, next, Gnomon
we created (so from Red it becomes Green).

In this way we preserve the linear Rule of the derivative and of the Integer derivative, that
the following Gnomon has to have an height that is 2 Units bigger than the previous one.

And we show also, that regardless which Unit we take: 1/2 as shown here, 1/10 or 1/10m

or in general 1/Km with K,m ∈ N for the moment, we always perfectly square the deriva-
tive y = 2x till a rational A = P/Km

All this works also if we take as example the case n=3, in fact the term:

Mn = [Xn − (X − 1)n] becomes: M3 = (3X2 − 3X + 1)

A3 =
A∑

X=1

(3X2 − 3X + 1)

Again now we can divide all the terms of our Sum by K3 , remembering that if we want to
left unchanged the result, we have to multiply the Upper limit by K so we have:

A3 =
A3

K3
∗K3 =

A∗K∑
X=1

(
3X2

K3
− 3X

K3
+

1

K3

)

Now we can call: x = X/K , so changing X with X = x ∗ K, if we respect the following
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conditions:

a) if and only if K is a Factor of A, or perfectly divide A

- the Upper limit becomes: (A/K) ∗K = A (with K,A ∈ N+ )

- the Lower Limit X = 1 becomes x = 1/K so:

A3 =
A∑

x=1/K

(
3(x ∗K)2

K3
− (x ∗K

K3
+

1

K3

)

Now we can simplify to have our new Step Sum, that moves Step 1/K from 1/K to A =
P/K, so the new Index x will be x = 1/K, 2/K, 3/K....A:

A3 =
A∑

x=1/K

(
3x2

K
− 3x

K2
+

1

K3

)

What is interesting is that K can be any Integer, but not just, as we will see in the next
chapters.

Talking for the moment of Integer K is for so clear that it can be, for example, equal to :
K = km

And this property will be of interest when I will show that we can also play with Rational
value k = 1/p.
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In this Tab. the Cube of 3 calculated with a Step Sum, Step 1/10. From x = 1/10 to 3 we
Sum 30 Gnomons M3,K calculate for each x.

In the Appendix 2, you'll �nd also some interesting example of what happen to a Sum of
such non conventional Terms when another function is applied to �lter just few desired
Rational.

Note: I know this new use of the Sums will be hard to be digested, but it will be more
clear that it is not in con�ict with the old notation and will let us show many interesting
uses of this Step Sum that is now able to raise an Upper Rational limit A = P/K.
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The General RATIONAL Complicate Modulus (or Gnomon's height function) Mn/K for all
n− th power of Rational A = P/K becomes:

Mn,K =

(
n

1

)
xn−1

K
−
(
n

2

)
xn−2

K2
+

(
n

3

)
xn−3

K3
− ...+ /− 1

Kn

So we have now a more useful instrument able to work with Rational, since I hope it's
clear we can now stop to 0, 5 or 2, 7 or any other rational has 1 decimal digit only. If you
need more digits, just rise K, if you need in�nite just keep the right K divide the upper
Rational limit P/K has in�nite number of digits.

How to make the Cube of 2 with a Step Sum Step 0.1:

23 = 8 is equal to the sum of the Red Columns

Base = 0.1

and the height will be M3/10

M3,10 = 3x2/10− 3x/100 + 1/1000

As we did for the Integers, we can now call the y′Q = Mn,K function: the Rational deriva-
tive that works for any x ∈ Q.

And to avoid any doubt I'm wrongly abusing of this notation, in the next chapter I'll show
how to transform those two non continuous functions, into the well known continuous func-
tions we call derivative / Integral.
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Step Sum with Step S > 1 :

I'll remember also how it's possible to manipulate the Sum without changing it's result in
this way:

LEMMA 1: Step SUM with Step S>1

The condition to represent a Power of an Integer via Step Sum, where the in-
dex jumps Step S > 1 is:

Choose a Step S that perfectly divides the Upper limit A

So it's possible to write An using a Step Sum, Step: "S"= factor of A with S > 1.

Example: we know how to write a square A2

A2 =
A∑

x=1

(2x− 1)

to hold the same result making for example just one step S, we need just to divide the
number of Index, here is A, by A and multiply the Sum, or all the sum's terms by A:

A2 =
A∑

x=1

(2x− 1) =
A∑

x=A

(2xA− A2)

If A = π1 ∗ π2 (where π1 and π2 two primes, or simply two factors of A) we can also write
the Step Sum Step π1 (or π2) doing the same trick we did for the Rational Step Sum, this
time Scaling UP that variables:

Again with an exchange of variable this time: X = x ∗ π1

the Lower Limit X = 1 becomes : X = 1 ∗ π1 = π1

the Upper Limit X = A becomes : X = A ∗ π1/π1 = A
so the Sum becomes:

A3 =
A∑

x=1

(3x2 − 3x+ 1) =
A∑

X=π1

(3X2 ∗ π1 − 3X ∗ π2
1 + 1 ∗ π3

1)
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Here an example of a Step Sum, for Cubes are multiples of 3, Step 3:

Where:

A3 = (3 ∗ a)3 =
A∑

x=1

(3x2 − 3x+ 1) =
A∑

X=3

(3X2 ∗ 3− 3X ∗ 32 + 1 ∗ 33)

The minimum number of Step we can make is 1, keeping the variable equal to the Integer
Root, but we can keep as Step > 1 any Integer factor of A, of one of their combinations.

From here we can immediately see that we are turning around the concept of factorization
one can start to investigate.
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Here an example of how many way we have to represent the Cube: 123 with a Step Sum
having a Step>=1:

Table 4: How many way we have to represent the Cube: 123

Cube of 12 using STEP SUM, Step>=1
x X=1*x 3X2 ∗ (1)− 3X ∗ (12) + 1 ∗ (13) SUM SUM (1/3)

1 1 1 1 1
2 2 7 8 2
3 3 19 27 3
4 4 37 64 4
5 5 61 125 5
6 6 91 216 6
7 7 127 343 7
8 8 169 512 8
9 9 217 729 9
10 10 271 1000 10
11 11 331 1331 11
12 12 397 1728 12

x X=2x 3X2 ∗ (2)− 3X ∗ (22) + 1 ∗ (23) SUM SUM (1/3)

1 2 8 8 2
2 4 56 64 4
3 6 152 216 6
4 8 296 512 8
5 10 488 1000 10
6 12 728 1728 12

x X=3x 3X2 ∗ (3)− 3X ∗ (32) + 1 ∗ (33) SUM SUM (1/3)

1 3 27 27 3
2 6 189 216 6
3 9 513 729 9
4 12 999 1728 12

x X=4x 3X2 ∗ (4)− 3X ∗ (42) + 1 ∗ (43) SUM SUM (1/3)

1 4 64 64 4
2 8 448 512 8
3 12 1216 1728 12

x X=6x 3X2 ∗ (6)− 3X ∗ (62) + 1 ∗ (63) SUM SUM (1/3)

1 6 216 216 6
2 12 1512 1728 12

x X=12x 3X2 ∗ (12)− 3X ∗ (122) + 1 ∗ (123) SUM SUM (1/3)

1 12 1728 1728 12
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The most General RATIONAL Complicate Modulus Mn,p/K :

Is well know we can Share an External (Integer for now) Factor into the Sum, so under
certain conditions we can put it into the Step Sum, with an exchange of variable, in the
same way. Then combining this Known Rule and the Exchange of variable previous one,
we can Introduce into out Step Sum any Rational External Factor, adjusting Limits and
Terms as will follow.
From the well known rule:

P ∗ A2 =
A∑

X=1

(2PX − P ); (P,A) ∈ N+

We call P the External Factor and we start to consider the Special Case when P = A so
the External Factor is Equal to our Upper Limit, or equal to a Factor of the Upper Limit.
In such case (If and only if !) we can make the Exchange of variable x= X*A:

A ∗ A2 =
A∑

X=1

(2AX − A) =
A2∑
x=A

(2x− A)

at the condition that the Sum moves Step =A, but also due to the fact that Both Index
and Terms, both behave linearly

For higher powers, f.ex. n = 3 the tricks works in the same way so there is a distribution
of the External Factor into any term of the Sum:

A ∗ A3 =
A∑

X=1

(3AX2 − 3AX + A)

But it is clear that we can NO LONGER make the exchange of variable x = X ∗ A due to
the presence of higher degree terms (from X2 on, for the higher power develop), and this
still in the special case P = A.

To let the trick of the Exchange of Variable be possible we have to remember we can play
with Irrational factors too, so looking to it as Cube (also in the case it is the Cube of an
Irrational value too) we can properly share it into the Sum in this way:

(A1/3)3 ∗ A3 =
A∑

X=1

(3(A1/3)3X2 − 3(A1/3)3X + A)

and now putting: x = A1/3 ∗X we can correctly operate the exchange of variable:

(A1/3)3 ∗ A3 =
A∗A1/3∑
x=A1/3

(3x2 ∗ (A1/3)− 3x(A2/3) + A)

This at the condition we move of the Irrational Step equal to (A1/3).

Of course nothing change if instead of A we have any integer p, so most in general we can
write:
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(P 1/3)3 ∗ A3 =
A∗P 1/3∑
x=P 1/3

(3x2 ∗ (P 1/3)− 3x(P 2/3)− P 3/3)

So the sharing of the External Factor into the Step Sum looks exactly as the sharing of
the divisor K we have seen in the previous chapter, so we are now ready to consider also a
Rational External Factor p/K where p = P 1/3 . Here an example of the result for n = 3:

((
P

K

)1/3
)3

∗ A3 =

A∗( P
K )

1/3∑
x=( P

K )
1/3

(
3x2 ∗

(
P

K

)1/3

− 3x

(
P

K

)2/3

−
(
P

K

)3/3
)

So the most General RATIONAL Complicate Modulus (or Gnomon's height function) Mn, P
K

for all n− th power of Rational A = Q
K
is:

P/K ∗ An =

A∗( P
K )

1/n∑
x=( P

K )
1/n

Mn, P
K
; (P,Q,K,A) ∈ N+

where:

Mn, P
K
=

(
n

1

)
(xn−1) ∗

(
P

K

) 1
n

−
(
n

2

)
(xn−2) ∗

(
P

K

) 2
n

+

(
n

3

)
(xn−3) ∗

(
P

K

) 3
n

...±
(
P

K

)n
n

In this way we can rise, for example any integer with the desired adjusted General RA-
TIONAL Complicate Modulus.

For example we can rise the number 341 = 53 + 63 showing it is not equal to the closest
Cube 343, taking as example A=5, B=6 C=7 is a quasi solution of A3 +B3 = C3:

Table 5: How to rise 341 Using a Cubic Irrational Modulus
X x = X ∗ (341/343) 3x2 ∗ (341/343)1/3 − 3x ∗ (341/343)2/3 + 341/343

Sum
1 0,998052575 0,994169096 0,994169096
2 1,996105151 6,959183673 7,95335277
3 2,994157726 18,88921283 26,8425656
4 3,992210302 36,78425656 63,62682216
5 4,990262877 60,64431487 124,271137
6 5,988315452 90,46938776 214,7405248
7 6,986368028 126,2594752 341
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Rule 11: Scaling the Sum. Index Vs. Terms Scaling / Shifting Rules

We see now the Last Set of Rules will help us to work with any problem involves Powers
and Equalities:

A) - how to Scale (Up or down) the Upper Limit LEAVING THE RESULT UNCHANGED,
so Rising/Lowering the Internal Terms of the SUM (JUST).

And, what happen trying to apply two modi�cations so:

B) - how to Scale (Up or down) the Upper Limit AND shifting the Lower one, LEAVING
THE RESULT UNCHANGED, so Rising/Lowering the Internal Terms of the SUM (JUST),
that is what Fermat state in his equation.

So in other terms for the Scaling Rule A:

A1) Is it possible, and under which conditions, to: Lower the UPPER LIMIT
from A to a < A, just, leaving the result unchanged RISING the VALUE of the
INTERNAL TERM/s ?

The answer is of course YES, with a trivial solution, if we introduce the Scaling Factor
ρ = (A/a) :

A∑
1

Mn =

a=A/ρ∑
1

(
A

a

)n

Mn =
a∑
1

ρnMn = ρn
a∑
1

Mn

A2) Or, vice versa, is it possible, and under which conditions, to: Rise the LOWER
LIMIT, for example from 1 to LL > 1, just LOWERING the VALUE of the IN-
TERNAL TERM/s ?

The answer, for both case, is of course YES, with a trivial solution, if we introduce the
Scaling Factor ρ = (A/a) :

a∑
1

Mn =

A=a∗ρ∑
1

( a
A

)n
Mn =

A∑
1

(1/ρ)nMn = (1/ρ)n
a∑
1

Mn

As we can see the Lowering Factor ρ = (A/a) is of the same degree of the n-th Power we
are working on, and is applied on all the terms of the Sum. The Factor can be, clearly,
taken out from the Sum using the well known Sum's Rule. This will be clear in what fol-
lows once we introduce the exchange of Variable x = X/K where I hope it's clear K = ρ
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New Rule for scaling the Upper Limit of a Step Sum:

Since we can go Rational we can now make an operation will be useful, and it will be in
the FLT proof: if we need to pass the Upper Limit of a Sum from A to B (with A and B
integers ), leaving the result of the Sum unchanged. From what we already know for going
Rational so writing A3 step 1/K, and scaling the Upper Limit from A to B we have:

A3 =
A∑
1

3X2 − 3X + 1 =
A∑

x=1/K

3x2

K
− 3x

K2
+

1

K3
=

B∑
x=A/B

3Ax2

B
− 3xA2

B2
+

A3

B3
(1)

As we can see the Scaling of the limit needs the scaling of EACH term, to left the result of
the Sum unchanged.

The proof is very simple once we put ρ = B/A we have (remembering Mn = (Xn − (X −
1)n)):

A3 =
A∑
1

M3 = ρ3
B∑
1

M3 = (B/A)3
B∑
1

M3 =
B∑
1

(B/A)3(3X2 − 3X + 1) (1b)

then we take ρ3 into the Sum and we apply the exchange of variable X = ρ ∗ x with ρ =
K = B/A to have:

A3 =

B=A∗ρ∑
x=1/K

(
A

B

)3(
3x2

K
− 3x

K2
+

1

K3

)
=

B=A∗B
A∑

x=A
B

3A3(x ∗B/A)2

B3
− 3A3(x ∗B/A)

B3
+
A3

B3
(1c)

that cancel out the B/A factors where possible becomes:

A3 =
A∑
1

3X2 − 3X + 1 =
A∑

x=1/K

3x2

K
− 3x

K2
+

1

K3
=

B∑
x=A/B

3Ax2

B
− 3xA2

B2
+

A3

B3
(1d)

And now an anticipation of the Vol.2: the reason of all this long work: Fermat ask himself
if it is possible to perform a similar scaling, but working on the index dependent terms,
only. F.ex for n = 3:

A∑
x=1/K

3x2

K
− 3x

K2
+

1

K3
=?

C−B∑
X=1

(3(X +B)2 − 3(X +B) + 1) (2)

So the right scaling of a right hand is a Genuine Cube of A, so for the real equality be-
comes scaling the Upper Limit from (C-B) to A, (but has to holds the same internal terms
!) taking K = (C −B)/A that is for so:

A∑
x=1/K

3x2

K
− 3x

K2
+

1

K3
=

A∑
x=(C−B)/A

3(C −B)x2

A
− 3(C −B)2x

A2
+

(C −B)3

A3
(3)
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While Fermat is asking this one :

A∑
x=1/K

3x2

K
− 3x

K2
+

1

K3
=?

C−B∑
x=1/K

3(x+B)2

K
− 3(x+B)

K2
+

1

K3
(4)

So if Fermat's Right hand of the (5) is right, so equal to A3, it must be equal to the Right
hand of the (3), while it is very di�erent (and of course wrong):

A∑
x=1/K

3x2

K
− 3x

K2
+

1

K3
=?

A∑
x=(C−B)/A

3(C −B)(x+B)2

A
− 3(C −B)2(x+B)

A2
+
(C −B)3

A3
(5)

The proof will show that this is impossible in the Rational since it is necessary to go to
the limit for K → ∞ so with an integral to have the equality. So this means we have to
rise to an Irrational limit (so one of the A,B, or C has to be an Irrational).
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Here the table where you can see in numbers what happens:

- in the left Table we rise an Integer Upper Limit is A = 5 with a Step Sum with a generic
rational step here is 1/K = 1/5. The result is always A3 since for Integers this sum is K
invariant.

- While on the right top we see how to rise the same A3 value, but with a rational Sum
from 1 to 6, so having 6 step. The Rule for this scaling is the one in the previous page.

- in the last one (5), viceversa we will see what happens into the right hand of a Fermat
Equation A3 = C3−B3 once cutted and shifted to the origin in the quasi triplet case A=5,
B=6, C=7: applying the right scaling Rule for the Upper Limit, so as we did for A to B,
but from (C − B) to A we see we cannot rise the genine power of an integer is 125, since
we clearly have, compared with the (3), same limits, but bigger Terms.

The aim here is just to show an example of this Rules, for the Proof you've to wait my
Vol.2 since it comes applying a limit and you probably need to learn what follows, so the
Maruelli's Integral via limit of this Step Sum. It looks like, but is not the same of Rie-
mann one.
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Chapt.7: From Step Sum to the Integral:

We enter now in the most interesting part of the Rational Calculus, what is known as the
Finite Di�erence Analysis, passing from the Sum, to the Step Sum, to the Limit, showing
that the Telescoping Sum property lead to the Integral, but in an interesting way:

we have no more, as in the Classic Riemann Integral an approximation of via via more
close Areas, approximation, since talking of derivative of Parabolas we know we have an
invariant: so don't care if we square the derivative with our Gnomons, or rational Gnomons,
or via Integral: we always get the same value (under few simple conditions).

I'll aslo show that in a very similar way we can Bound some Irrationals between a Lower
and an Upper Integer and then Rational Limits that becomes our Irrational Value just
once we push the divisor K → ∞.

From Step Sum to the Integral:

If we keep for example the Complicate Rational Modulus for Cubes: M3,K = 3x2

K
− 3x

K2 +
1
K3

and we �x, for example (since it is true for any K ∈ N+ : K = 10m then pushing m → ∞
we have back the well know integral, as shown in this picture:

The telescoping Sum Properties assure us that Power's of Integers, so all the derivative of
Y = Xn, can be perfectly squared with columns of any BASE from 1, but as seen due to
the fact that we can scale any picture as we want, we can also think to increase the number
of Gnomons keeping a littlest base 1/K instead of 1 (or more under certain conditions),
but we can also push K → ∞ to move Step dx, so having back an integral.
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Starting from A ∈ N+ we can write An as a Sum, or as a Step Sum or, at the Limit as
Integral remembering the exchange of variable x = X/K in each X dependent Term (in
this way we cut by Kn the Sum of the terms), and in the Lower Limit (and in this way we
multiply by K the number of index, what I call the Step balancing the reduction of the
Terms, as shown in the �rst chapters), having:

An =
A∑

X=1

Mn =
A∑

x= 1
K

Mn,K = lim
K→∞

A∑
x= 1

K

Mn,K =

∫ A

0

nx(n−1)dx

Example for n = 3, putting x = X/K:

A3 =
A∑

X=1

(3X2 − 3X + 1) =
A∑

x=1/k

(
3x2

K
− 3x

K2
+

1

K3

)
Or:

A3 = lim
K→∞

A∑
x=1/K

(
3x2

K
− 3x

K2
+

1

K3

)
=

∫ A

0

3x2dx = A3

It's easy to prove this Limit with the classic technique, but also note that we have a proof
of the Transcendental Law of Homogeneity for K → ∞ that, in this case: 3x/K2 and
1/K3 are vanishing quantities (are in�nitesimal of bigger order) respect to the First Term
3x2/K since it depends just on f(x)/K, that is our non vanishing quantity dx

Just to remember how Numbers are organized:
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We can therefore state out what was one of my �rst Theorem here (discovered several years
before the previous Rule):

If we are working with a power of an Integer, only, the result of the Sum / Step
Sum is independent from the K we choose:

If A ∈ N∗ than we can write An as:

An =
A∑

x=1

Mn =
A∑

x=1/K

Mn,K = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

0

3x2dx

Remembering that:

Mn,K =

(
n

1

)
xn−1

K
−
(
n

2

)
xn−2

K2
+

(
n

3

)
xn−3

K3
+ ...+ /− 1

Kn

If A ∈ Q : A = P/K than we can write An just as:

An =
A∑

x=1/K

Mn,K = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

0

3x2dx

If A ∈ R with A= Irrational, than we can, in general, write An as:

An = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

0

3x2dx

But now the interesting concerning: if the Irrationality of A depends on a known factor,

for example A =
√
2 ∗ a where a = r/s ∈ (Q),

than is possible to hack again the Step Sum, �xing an Irrational Step S = 1/K ∗
√
2 to let

the Step Sum works with a Finite Number of Irrational Steps.

I know this left some non expert reader a little stuck, but after few minutes of check you
will se it works and this will be very useful once we will look into Fermat's Last Theorem
and Beal conjecture.
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Proof in the most simple case n = 2:

Given: a, k ∈ N+ we can write:

ak∑
x=1

(
2x

k2
− 1

k2

)
= a2 =

∫ a

0

2x dx.

Proof:

ak∑
x=1

(
2x

k2
− 1

k2

)
=

1

k2
∗

{(
2 ∗

ak∑
x=1

x

)
−

ak∑
x=1

1

}
=

=
1

k2
∗ {(ak)(ak) +��ak −�

�ak)} =
1

��k
2
∗ (a2��k2) = a2 =

∫ a

0

2x dx

For n > 2 it follows in the same way (just with more vanishing Terms). But to understand
the fact that there is continuity between the Integer Sum and the Integral, also the Old
Mathematician has to digest that:

- The Mute Property of the Index was a False Math Mito, if taken in the sense that it has
nothing to tell to us, in fact,

as shown, we can make a change of variable calling x = X/K so we have a K times scaled
variable and to Left unchanged the result we can write:

A2 =
AK∑
x=1

(
2x

K2
− 1

K2

)
=

A∑
x=1/K

(
2x

K
− 1

K2

)
=

= lim
K→∞

A∑
x=1/K

(
2x

K
− 1

K2

)
=

∫ A

0

2x dx

The proof it's immediately given once will be clear that :

- For the Lower Limit, the �rst 1/K step when K → ∞ becomes 1/K = 0

- 1/K2 it's an in�nitesimal of Bigger Order respect to 1/K, than it vanishes.

- The �rst term divisor 1/K becomes in the standard notation: 1/K = dx for K → ∞

Note: Is very important to remember that the Integral of the Rational derivative, once it
is considered as a Continuous Curve always satisfy this property:

∫ A

0

Mn,x dx <

∫ A

0

nXndx

In fact is clear that, for example for n = 3:
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∫ A

0

(3x2 − 3x+ 1)dx <

∫ A

0

3x2dx

And will be also important for what I'll show in the next chapters to note that in case we
take as Complicate Modulus:

Mn,x+1 = (X + 1)n −Xn) we have (Except for A=1)

∫ A

0

Mn,x+1 dx >

∫ A

0

nXndx

for example for n = 3: ∫ A

0

(3x2 + 3x− 1)dx >

∫ A

0

3x2dx

And. of course this will holds true also if we go Rational:∫ A

0

Mn,K,x dx <

∫ A

0

nXndx

In fact is clear that, for example for n = 3, for any K ∈ Q+:∫ A

0

(
3x2

K
− 3x

K2
+

1

K3

)
dx <

∫ A

0

3x2dx

And in case we take as Rational Complicate Modulus the next step Mn,K,x+1 we have (Ex-
cept for A=1) for example for n = 3:∫ A

0

Mn,K,x+1 dx >

∫ A

0

nXndx∫ A

0

(
3x2

K
+

3x

K2
− 1

K3

)
dx >

∫ A

0

3x2dx

The concept of Bound will become very useful more ahead in this work once we will work
on Fermat the Last Theorem and on the Irrational numbers. Will be shown in the next
pages how the approach to the Limit behave rising 1/K:

Di�erently from how the Riemann Sum smoothly approach the Riemann Integral, here
we will see that the approach to the Limit is convergent (in media) but de�ned by a non
smooth function. For us is enough to prove it is convergent in Media and that both the
Best Approximated Points of the Lower and of the Upper Bound are converging too. So
this convergence is not as intuitive as the Riemann one is. In the next chapters a complete
explanation of this last concerning.
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Chapt.8: Extraction of the Rational n-th root, with a �xed number
of digit precision

We saw in Chapt.3 that is possible to make the n-th root of an Integer using the Recursive
Di�erence δ method.

After showing how the Step Sum works, so how to rise a Power of a Rational using a Step
Sum, Step 1/K, I'll show now how to make the Rational n-th Root p of a Rational P ∈ Q.
I start keeping P ∈ N since at the end of the �rst example will be clear how to go over in
the Rational too.

We know that regardless if A = Q/K ∈ Q or A ∈ N we can write, for example for n = 3:

A3 =
A∑

x=1/K

(
3x2

K
− 3x

K2
+

1

K3

)
So is clear that if we have a number P = 31, of what we want to know, for example, the
cubic root with 1 digit approximation, we have to repeat backward the step we made to
have it's cube keeping K = 10 and the Complicate Modulus M3. More in general to have
m digits we have to choose K = 10m, since we are working with Decimal Base Numbers.

In the next table I've plotted:

x = RationalRoot ; M3,K=10 = (3x2/10 − 3x/102 + 1/103) ; Partial Sum ; Di�erence: 31 -
Partial Sum

In case P is not a Perfect Cube, we have at the end of the recursive Di�erence a Rest that
is littlest than the next Rational (K=10) Rational Cubic Gnomon so M3/10 calculated at
x = p+ 1 (where I remember p is always in our notation the Integer Cubic Root of P ).

If rising K it's possible to arrive at Rest = 0 then P has a Rational root, vice versa, as I
said in Chapt.3, this case will be divided in two:

1- it has an in�nite, Periodic, number of Decimal Digits so it's a Rational, or

2- it has an in�nite, Non Periodic, number of Decimal Digits so it's an Irrational.

In the case of 31 we have the suspect it has an Irrational Root since rising K, the Rest be-
comes smaller and smaller, but we need to push K to the limit K → ∞ to see the Rest
vanishing, and we can't recognize a Period in that number.

Using this Algorithm we can therefore prove whether a number P has or not an Integer
Root (so is, or not a Perfect h-th Power), and since this method always gives the �rst right
m − th digits choosing k = 10m, than it always gives an Approximated Lower Value of the
Root.

In case the Rational Root has a Period bigger than our computational power, and we are
not able to discover with other method is there is a factor K = π1 that leads to a Zero
Rest once we set a Recursive Step Di�erence K = π1, it is clear we cannot distinguish be-
tween a Rational or an Irrational.
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Is also clear this is an easy / non fast, non computational useful method, but I'll show
that this will be a very useful method to solve Power Problems, like prove the Irrational-
ity of a Number, prove Fermat the Last, Beal Conjecture etc. Here I patch the table of the
Recursive Di�erence K = 10 that show us the Cubic Root of 31 with one Decimal digit.
Than I'll do the same rising K = 100

It must be clear that this is not the 'In�nite Descent' we know it was used by Fermat's
and Newton's use for their proof for n = 4 and n = 3, but is a new more powerful method.

To make the cubic root of 31, with 1 digit precision we have to keep K = 10, then use the
Gnomon: M3/10 = 3x2/10 − 3x/102 + 1/103. Starting from 0.1 going ahead till the Next
Step it gives a Gnomon that is Too Big to be subtracted from the Rest we have.
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I'll show now what happens rising K = 102: a new right digit will appear, this means this
algorithm alway gives us the approximation by defect of the true root till the m− th digit,
here now m = 2.

So if you need m digits, you've to take K = 10m

In case you rise the last signi�cant digit, and you continuous to rise K, you'll just �nd
other digits equal to zero.

If you see a periodic sequence of results, then you are sure you've a Rational, but if no ze-
ros nor periodic sequence is shown, than, if your are not able to discover the right Factor
K, of P = Q/K ∈ Q, you still lie in the doubt if you are playing with a Rational or an
Irrational. To prove you are playing with a Rational This is another proof that Factoriza-
tion play a very important rule in several Math problems.

I choose Numbers Base = 10, but we can did the same for any Base.
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We can therefore state out �rst Theorem and we can now also use the Law of Trichotomy
in this way:

If we are working with a power of an Integer, only, the result of the Sum / Step
Sum is independent from the K we choose:

If A ∈ N+ than we can write An as a TRIPLE EQUALITY:

An
N =

A∑
x=1

Mn =
A∑

x=1/K

Mn,K = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

0

3x2dx

Remembering that:

Mn,K =

(
n

1

)
xn−1

K
−
(
n

2

)
xn−2

K2
+

(
n

3

)
xn−3

K3
− ...+ /− 1

Kn

If AQ ∈ Q− N : A = P/K than we can write An
Q as:

AQ
n < AQ

n =

AQ∑
x=1/K

Mn,K = lim
K→∞

AQ∑
x=1/K

Mn,K =

∫ AQ

0

3x2dx

If AR ∈ R−Q with AR = Irrational, than we can, in general, write An
R as:

AN
n < AQ

n =
A∑

x=1/K

Mn,K < AR
n = lim

K→∞

AR∑
x=1/K

Mn,K =

∫ AR

0

3x2dx

And as told if the Irrationality of AR depends on a known factor, for example AR =
√
2 ∗

AQ where AQ = P/K ∈ (Q), than is possible to hack again the Step Sum step s = (1/K) ∗√
2 to let it work with a �nite number of Irrational Steps.

BUT, MORE IMPORTANT, we can BOUND AQ AND AR in this way:
If AQ ∈ Q− N : AQ = P/K than we can write An

Q as:

AN
n < (P/K)n < (P + 1)n/Kn

If AR ∈ R−Q with AR = Irrational, than we can, in general, pack An
R between the fol-

lowing Bounds, independently on how bug K is:

AQ∑
x=1/K

Mn,K < AR
n <

AQ+1/K∑
x=1/K

Mn,K
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With the known conditions, THAT WE ALREADY KNOW THAT AT THE LIMIT FOR
K → ∞ JUST BOTH THE LIMIT CONVERGE TO AR

n, so is again TRUE THE EQUAL-
ITY:

lim
K→∞

AQ∑
x=1/K

Mn,K =

∫ AR

0

3x2dx = lim
K→∞

AQ+1/K∑
x=1/K

Mn,K

This is the most interesting property we have seen till now, since this allow us to Re-De�ne
using our Complicate Rational Modulus what an IRRATIONAL ROOT is. And we al-
ready have seen that this Convergence is NOT SMOOTH, but in media it is Monotone
Convergent.

What is now, I hope more clear is that via Exact Calculus, so applying the rule for �nd-
ing maximum and minimum, we can now easy �nd the abscissa of two following rationals
having the same ordinate (in our polynomial function, for the moment).

But also, if we are smart enough to �nd the Proper Rational Derivation Step, to �nd one
or all the Rational Roots of our Polynomial equation.
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Chapt.9: How to work with Irrational values

There is a last interesting case: our Step Sum can be able to rise an irrational value P ∈
R−Q just in case the Irrational Factors (be it a single one, or, more in general, an aggre-
gation of Real Numbers we can qualify as an Irrational) can be taken out from the sum.
This is the key point I'll use in the Vol.2 to prove Fermat is right and he has in the hands
all the "simple" instruments shown till here to state your Last theorem and prove it.
I know from several years of discussions on several di�erent forums that while it's clear for
everybody that (for example) if:

P = π ∗ A2

we can write is as:

P = π ∗ A2 = π ∗
A∑
1

2x− 1

It's complicate for someone to understand that we can carry (for example) the Square Root
of π into the Sum in this way:

P = π ∗ A2 = π ∗
A∑
1

2x− 1 =

A∗
√
π∑

1∗
√
π

2x− 1

Where we move of an Irrational step:

1 ∗
√
π, 2 ∗

√
π, ..., i ∗

√
π, ...., A ∗

√
π

Since as told and proved in the previous chapters, when we multiply the index for a cer-
tain value K means we multiply all the Sum by the n-th power of such K

As shown in the previous chapters this holds true also when the value K is a Rational k =
1/K

Here an example (and proof) of what happens in case we have K =
√
2. Taking x =

X/
√
2:

P = a2 =
A2

2
=

1

2

A∑
1

2x− 1 =

A/
√
2∑

x=1/
√
2

2x√
2
− 1

2
=

= 2 ∗
A∑

x=1

{(
2x

2(1/2)
· 1

2(1/2)

)
− 1

2

}
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A is a positive integer, the sum has an integer number of summands, but we have a Step
that is an irrational number.

We can write:

2 ∗
a∑

x=1

{(
2x

2(1/2)
∗ 1

2(1/2)

)
− 1

2

}
= 2 ∗

a∑
x=1

(
�2x

�2
− 1

2

)
=

2 ∗

(
a∑

x=1

x

)
−

a∑
x=1

1 =
�2a(a+ 1)

�2
− a = a2 + a− a = a2.

Another example in case n = 3:

2 ∗
a∑

x=1

{
3 ∗
( x

2(1/3)

)2
∗ 1

2(1/3)
−
(

3x

2(1/3)
∗ 1

2(2/3)

)
+

1

2

}
= 3 ∗

a∑
x=1

x2 − 3 ∗
a∑

x=1

x+
a∑

x=1

1 =

=
3a(a+ 1)(2a+ 1)

6
− 3a(a+ 1)

2
+

2a

2
=

2a3 + 3a2 + a− 3a2 − 3a+ 2a

2
= a3.

This will becomes useful when in the Vol.2 I'll present my proof of Fermat the Last Theo-
rem.

The point is always the same: If C is an Integer we can rise an Irrational Upper Limit
Value, for example C/21/n making an Integer Number of Step equal to C, at the condition
that we use the right Irrational Step K = 1/21/n. So the base of the Gnomons has to per-
fectly divide the distance x from the origin, here x = C/21/n.

For the same reason is also true, for example that:

P = a2 =
A2

22/3
=

A/21/3∑
x=1/21/3

2x

21/3
− 1

22/3

The same for any other Power following just the Power rules.
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How to use di�erent Irrational Complicate Modulus to represent the same value

I hope is clear now that we can use di�erent Irrational Complicate Modulus to represent
the same value.

For example we can use M2,i or any other Mn,i to represent a Square.

Here a Square written via Cubic Irrational Modulus:

p2 =

p∑
x=1/p1/3

2x

21/3
− 1

22/3
=

p/p1/3∑
x=1/p1/3

3x2

p1/3
− 3x

p2/3
+

1

p

Unfortunately to dismount the Left hand using part of the Right hand terms (or vice versa)
is possible but will not lead to the identity 0 = 0 since we have di�erent Triangles, but will
lead to a solving equation we know has p as solution.
For those still can't believe to my Irrational Complicate Modulus Algebra here is the nu-
merical example:

Table 6: Representing an Irrational Square (of 13), via Irrational Cubic Modulus

X x/131/3 (3 ∗ x2/(13)1/3) − 3 ∗ x/((13)2/3) + 1/13 Sum
1 0,42529037 0,076923077 0,0769231
2 0,850580741 0,538461538 0,6153846
3 1,275871111 1,461538462 2,0769231
4 1,701161481 2,846153846 4,9230769
5 2,126451851 4,692307692 9,6153846
6 2,551742222 7 16,615385
7 2,977032592 9,769230769 26,384615
8 3,402322962 13 39,384615
9 3,827613333 16,69230769 56,076923
10 4,252903703 20,84615385 76,923077
11 4,678194073 25,46153846 102,38462
12 5,103484443 30,53846154 132,92308
13 5,528774814 36,07692308 169

What is interesting is the (quite trivial) fact that some Term of the Sum is an integer value.

And it happens each time (using the same example) we have X
131/3

for what:

3 ∗ x2/(13)(1/3))− 3 ∗ x/((13)(2/3)) + 1/13 = integer

So when: (
3 ∗X2 − 3 ∗X + 1

13

)
mod13 = 0

in this case X = 6 gives:

3 ∗ 62 − 3 ∗ 6 + 1

13
= 7

and X = 8 gives:
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3 ∗ 82 − 3 ∗ 8 + 1

13
= 13

Again we have new series for Oeis.org, but unfortunately they no longer appreciate my so
productive work...

But, most important, there is a know method to mathematically solve this congruence, re-
membering that:

ax2 + bx+ c ≡ 0
·4a⇐⇒ (2ax+ b)2 ≡ b2 − 4ac (mod p)
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Chapt.10: Out from the Rational:

We can now try to revisit some classic math problem, for example how to prove that the
n-th root of an Integer, is not a Perfect n-th power, is an Irrational. While the Classic Proof
start from the fact that we must already know that the initial number is not a Perfect n-
th power, so we need to make a numerical check of it before starting the proof, the proof
via Complicate Modulus Algebra seems to me more direct.

Proof that P (1/n) = Irrational if P ̸= pn ; P, p ∈ N:

Standard Proof are based on the Initial Statement that P ∈ N or A is a Perfect Square.
From some Algebra book you can �nd this sort of proof seems to me "more than obscure":

"Classic Proofs of Irrationality of
√
2:

A short proof of the Irrationality of
√
2 can be obtained from the Rational Root Theorem,

that is, if p(x) is a Monic polynomial with integer coe�cients, then any Rational Root of
p(x) is necessarily an Integer.

Applying this to the polynomial p(x) = x2 − 2, it follows that
√
2 is either an Integer or

Irrational. Because
√
2 is not an integer (2 is not a perfect square),

√
2 must therefore be

Irrational.

This proof can be generalized to show that any Root of any Natural Number which is not
the Square of a Natural Number is Irrational.

I very disagree with this kind of 'proof' since it prove you nothing ..if you don't know what
many other things are... And in case A ∈ Q and in case we don't know if P is a PerfectSquare,
then we have no way to prove if

√
P is an Irrational or not."

But the above proof can looks circular (to one do not well understand it) since it seems it
start assuming that an Irrational p is not the Root of a Perfect Power, then close saying it
is for sure not an Integer since it Square is not the Square of an integer. So a student need
to spend time on to understand how it works.

The Old proof looks more clear:
Suppose that

√
2 is a rational number. Then it could be written as

√
2 =

p

q
for two natural numbers, p and q. Then squaring would give

2 =
p2

q2

2q2 = p2

so 2 must divide �p�<sup>2</sup>. Because 2 is a prime number, it must also divide p,
by Euclid's lemma. So p = 2r, for some integer r, But then

2q2 = (2r)2 = 4r2
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q2 = 2r2

which shows that 2 must divide q as well. So q = 2s for some integer s. This gives

p

q
=

2r

2s
=

r

s

Therefore, if
√
2 could be written as a rational number, it could always be written as a ra-

tional number with smaller parts, which itself could be written with yet-smaller parts, �ad
in�nitum�.

But for the "Well-ordering principle" this is impossible in the set of Natural Numbers.
Since

√
2 is a Real Number, which can be either rational or irrational, the only option left

is for
√
2 to be irrational.

(Alternatively, this proves that if
√
2 were Rational, no "smallest" representation as a frac-

tion could exist, as any attempt to �nd a "smallest" representation p/q would imply a smaller
one existed, which is a similar contradiction).

So here I try to present a proof using the Complicate Modulus Numbers.

Proof that if P ∈ Q− N then P 1/n /∈ Q so P 1/n is an Irrational:

I can show with our new n-th Root method we can prove it without knowing in advance if
P is a Perfect Power:

If P 1/nQ = Q/K and (both) K = 10m perfectly divide Q and Q/K has a Finite Number
of Decimal Digits m ∈ N, than we can transform P in an integer multiplying it by 10m,
than making our n-th root with the Recursive Di�erence modulo Mn we can have just two
case:

The di�erence stops with a Rest = 0 or not.

In case we have Rest = 0 than P 1/n ∈ Q, else if Rest > 0 than P 1/n /∈ Q.
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Another In�nite Descent:

Another, unnecessary way, is to use the Rational Complicate Modulus Mn/K=10 to see that

if (P ∗ 10m)1/n ∈ N than the recursive di�erence stops exactly to p = (P ∗ 10m)1/n, with
p ∈ N, so the �rst Decimal Digit (and all the following if we rise m) will be Zero. While
if it doesn't, we will have one more signi�cant Decimal Digit and at this point we are sure
continuing to rise m we will have in�nite many non periodic Decimal Digits.

But one can be unfamiliar with this kind of Modular Algebra and can ask for more details
so we can complete the proof using the limit of the Sum for K → ∞ so what is my In�nite
Descent:
We know that:

(√
2
)2

= 2 = lim
K→∞

√
2∑

1/K

(
2x

K
− 1

K2

)
=

∫ √
2

0

2xdx = 2

The very clear proof comes by the fact that we can de�ne 2 Bound:

A Lower Bound having a Rational Upper Limit (Upper Limit for the Lower Bound) is
ULLB = Q/K <

√
2 since we know is:

(
√
2)2 = 2 >

ULLB∑
1/K

(
2x

K
− 1

K2

)
for any K ∈ N+

And an Upper Bound, since we rise a Rational Lower Limit for the Upper Bound (Lower
Limit for the Upper Bound) LLUB = ULLB + 1/K = Q/K + 1/K >

√
2 since we know

is:

(
√
2)2 = 2 <

ULLB+1/K∑
1/K

(
2x

K
− 1

K2

)
for any K ∈ N+

And we know by limits rules that both Upper and Lower Limits converge to
√
2 for K →

∞

ULLB∑
1/K

(
2x

K
− 1

K2

)
< (

√
2)2 <

ULLB+1/K∑
1/K

(
2x

K
− 1

K2

)
Still if it isn't a smooth convergence, in fact if we plot the Best Rational Approximated
Lower Value ULL = Q/K <

√
2 rising K from 1 to 10m we will see a Saw Teeth func-

tion like the one below, due to the fact that some K divisor better approximate the Limit
Value:
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Of course you need to write some line of code to obtain the closest two Rational Values,
and at the moment there is no LaTeX sing to de�ne what is similar to the Floor / Ceeling
operator, but that works with Rational, and as you can see will have in�nite number of
Values depending by the K you choose.

What is important here, after you wrote your program to sort the Value of the Sums rising
K you need to build this graph

is to remember that any software works with a limited number of Digit, and this will a�ect
your Measure by an error.

You can try to �gure out how the error behave, making the same approach to a Known
Genuine Square, here for example 9. As you can see the digit my VB Program take in count,
will produce this error:
Looking at the value we see that are little enough to NOT disturb too much the real Mea-
sure, but for sure an error is present and we have to remember that the Sum of Two errors
/ approximations will not give an error that is exactly the Sum of the Two.
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Here an example of the Error EXCEL did on the Step Sum, Step 1/K (K=1 to 1000) till
B3 = 63

Here an example of the Error EXCEL did on the Step Sum, Step 1/K (K=1 to 1000) till
B3 = 603. As you can see Measure Scale makes Lot of Di�erence !

All this will be very useful once we have to prove the FLT, but to prove the theorem we
will need to �nd a way to generalize for a generic triplet value represented by Letters A,B,C,
instead of a single known triplet of numbers, here for example A = 5, B = 6, for what for
n=3 will happen that: A3 +B3 = 341 ̸= C3 = 73 = 343.
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A turn in the real life of measuring:

What is also interesting, for those is not familiar with Measure theory, and art, is that in
case we are making a real Measure with an instrument that has a precision K, and one
wanna obtain the Best Possible Result (having a �nite budget) is NOT at all sure that
spending more for a more "precise" instrument, so with a Bigger K, one have back , for
sure, a Better Measure or the Better one.

In fact in this last example one having an instrument with precision K = 73

measuring the the Irrational Root coming from the value of 341

with an instrument capable to Measure just Rational Powers n=3 with the Mn,K modulus,

will obtain 340.9902395,

while one having an instrument with precision K = 954

have back a worst 340.8472866.

And since the cost of a 12 times more precise instruments is several times more than 12
times, just, (and sometimes it is more than 122 or out of any budget at all if physically im-
possible to be built with the actual tech) , one can immediately understood how is impor-
tant to choose the right K while making a Measure, so to choose the right instrument. For
those are familiar with electronic device you know the problem of measuring the Voltage
on a circuit, over a resistance: depending if we have an high or big resistance we need to
evaluate if use a voltmeter (that has an high internal resistance) or an ammeter, that has
a low resistance.

Understood what above, will be easy to write another Proof:

Proof of Legendre Conjecture:

I hope what follows will prove the Legendre's conjecture:
Be: πi the i-esim Prime Number, then

q∑
1/K

(
2x

K
− 1

K2

)
< (

√
πi) <

q+1/K∑
1/K

(
2x

K
− 1

K2

)
Where I hope you already are, now, familiar with my Step Sum notation.

2) A clari�cation of what let the inequality be true, comes from the easy concerning that
for any R ∈ R−Q is true that:∫ R

0

Mn,K,x dx <

∫ R

0

nXndx

and ∫ R

0

Mn,K,x+1 dx >

∫ R

0

nXndx
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for any K ∈ Q+

- So the proof comes showing that since the Limit exists and is our Irrational (square),

and that till K is not at his Limit (∞), Both the Terms (all the terms), still if calculate as
an Integral between 0 and R, or as a Sum between 1/K and R, show true the inequality
because they are

LITTLEST THEN THE ONES AT THEIR LIMIT FOR K → ∞ ARE.

In short till we have a Gear (instead of a smooth circle) we cannot rise an Irrational Up-
per Limit or a Limit that is an aggregation of Irrationals (will not produce a much or less
trivial cancellation).

3) But the theorem can be extended to all the Irrationals R and to all the aggregation of
Irrationals (sum, product, etc...) WE CAN PROVE will not produce trivial cancellation(s)
and are for so Proven Irrationals.

Trivial cancellation are for example:

p+ q = (1 +
√
2) + (1−

√
2)

p ∗ q = (
√
2) ∗ (1/

√
2)

WHILE WE HAVE TO TAKE LOT OF CARE WITH NON TRIVIAL (Known) CAN-
CELLATION, that are probably Wrong.

So before prove that e + π or 2e and several other tricks with Irrationals, are for sure Ir-
rationals too, we need to re�ect about the fact that Limits will not always returns the ex-
pected simple/clear result, so we can divide them in two Classes:

1- The one having Convergent Bounds (also non smooth but in some ways strictly conver-
gent):

so calling LB the LowerBound and UB the UpperBound

for any x, is

yLB < Limit and yUB > Limit,

(or in the known notation yLB = Limit − ϵ and yUB = Limit + ϵ for any arbitrary little
ϵ > 0...)

2- And the one having NO Convergent Bounds:
For example be:

UL=∞∑
1

ai

with

ai = 1 for i = odd

and

ai = −1 for i = even
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it is known it has an Indeterminate Limit, since IT IS NOT POSSIBLE to establish how
such sequence will "end" at ∞: in fact for UL ∈ N+ the answer is 1, or 0 depending if the
UL = Odd or UL = Even, but the reason can be better argued now:

Since there are No vanishing terms in this construction, is Not Possible to De�ne Converg-
ing Bounds, so WE CANNOT ASSIGN TO THIS SERIES A GENUINE VALUE AT ITS
LIMIT (as already well known)
What is now, I hope more clear is that via Exact Calculus, so applying the rule for �nd-
ing maximum and minimum, we can now easy �nd the abscissa of two following Irrationals
(too) having the same ordinate (in our polynomial function, for the moment).

But also, if we a smart enough to �nd the Proper Irrational Derivation Step, to �nd one or
all the Irrational Roots, too, of our Polynomial equation.
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Complicate Modulus Algebra on the Imaginary Plane:

Root of a Negative Number:

Taking
√
−1 as example we can tray to extract this square Root with my Recursive Di�er-

ence for Genuine Squares Modulus, so using the M2,K,− = 2x/K − 1/K we get a wrong
result:

But this is just because, we know, the Root of −1 lies on another plane that is not the X-
Y one, so it is not a Real Number. But the power of my Complicate Modulus Algebra is
that there is an appropriate modulus perfectly extract the Square Root of −1 (and any n-
th root of negative numbers) using the proper Imaginary Complicate (Rational) Modulus
Mn,K,i.

To have the good result we have to change plane so keep the right Versor j (since we are
no longer talking of Real Ordinate Y , but imaginary one we usually call i), and this hap-
pen simply changing all the sign of the Terms of the Complicate Modulus:
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1∑
j=1/K

(
−2j

K
+

1

K2

)
= −1

And in this case is again True the Equality at the Limit, in fact:

lim
K→∞

1∑
j=1/K

−2j

K
+

1

K2
=

∫ 1

j=0

−2jdj = −2/2[j2]10 = −1

So we can deal now with a Real Complicate Number, and with a Imaginary Complicate
Number, that as the known one can be made by two part: a Real one plus a Complex one,
and funny story, we again have our Talking Index that is now a Versor, x for Real, j for
imaginary remembering one must be 90 degree respect to the other since we can see here-
after that if we try to force a negative Index into the Sum, we no longer have back an n-th
Power.

In this way holds true the same Rule for the Integer/Rational/in�nitesimal (here for square)
we already seen in the previous chapters.:

P =

|p|∑
J=1

−2j + 1 =

|p|∑
j=1/K

−2j

K
+

1

K2
= lim

K→∞

|p|∑
j=1/K

−2j

K
+

1

K2
=

∫ |p|

j=0

−2jdj

So, most in general, the Imaginary Complicate Modulus is:

Mn,J = −(Jn − (J − 1)n)
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and follows that to have the Rational one we will call: Mn,J,K is enough to change the sign
of all the terms of the known Rational one Mn,K

Now the interesting question (for me):

- is "J" the imaginary Versor on witch Imaginary Roots of Negative Numbers Lies On ?

- or we can use X instead of J since it is the "continuation" of the same known X Versor ?

Will be enough to write a little collection of numerical example to have back the answer:
we have just to try to keep J Positive or Negative, and to make all the possible exchange
of Signs into the Modulus formula:

Table 7: TRYING TO USE A NEGATIVE INDEX and THE SAME MODULUS M2,J = −2J + 1
J -2J+1 SUM DIFF. -119
-1 3 3 -122
-2 5 8 -127
-3 7 15 -134
-4 9 24 -143
-5 11 35 -154
-6 13 48 -167
-7 15 63 -182

So this is not correct. As will be wrong to use the (classic) COMPLICATE INTEGER
MODULUS M2 = 2X − 1:

Table 8: TRYING TO USE A NEGATIVE INDEX and THE (classic) COMPLICATE INTEGER MOD-
ULUS M2 = 2X − 1

X 2X-1 SUM DIFF. 119
-1 -3 -3 122
-2 -5 -8 127
-3 -7 -15 134
-4 -9 -24 143
-5 -11 -35 154 ????
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While for n = 2 we can use the IMAGINARY SPECULAR MODULUS M2,+ = 2X + 1
and it Works:

Table 9: USING A NEGATIVE INDEX and IMAGINARY SPECULAR MODULUS M2,+ = 2X + 1
X 2X+1 SUM DIFF. -119
-1 -1 -1 -118
-2 -3 -4 -115
-3 -5 -9 -110
-4 -7 -16 -103
-5 -9 -25 -94
-6 -11 -36 -83
-7 -13 -49 -70
-8 -15 -64 -55
-9 -17 -81 -38
-10 -19 -100 -19 <- P=-10i Rest -19
-11 -21 -121 2

While if we go higher for ODD powers we can see we have a wrong result. This is the clas-
sic Cubic Root:

Table 10: Add caption
J -3J�2+3J-1 SUM DIFF. -139 CUBIC ROOT
1 -1 -1 -138
2 -7 -8 -131
3 -19 -27 -112
4 -37 -64 -75
5 -61 -125 -14 <- P=-5i
6 -91 -216 77

While this is the Wrong one using the Negative Index and the Imaginary Complicate Mod-
ulus:

Table 11: USING A NEGATIVE INDEX and the IMAGINARY MODULUS M3,+ = −3 ∗ J2 + 3 ∗ J − 1
J -3J�2+3J-1 SUM DIFF. -139 CUBIC ROOT
-1 -7 -7 -132
-2 -19 -19 -120
-3 -37 -37 -102
-4 -61 -61 -78
-5 -91 -91 -48
-6 -127 -127 -12 ???
-7 -169 -169 30

So in this way we still arrive to a Root, but is not the right one.
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Chapt.11: Relations between Mn and Mn+/−1 :

A nice property of the Complicate modulus Mn is that:

Mn+1 = (n+ 1)

∫
(Mn) + C

Where C is the Integration Constant

For those are familiar with Ordinals it's clear I discovered a 2-th level of Order in Pow-
ers. We cannot just sort N and a bijection with our Gnomons Mn for one n we choose, but
ALL of them, regardless of which n, are elements of a well sorted set M, and the relation
is bidirectional so it's also true for the derivative. So we can call this a Multidimensional
Ordinal.
For example:

M2 = 2x− 1

then:

M3 = (n+ 1)

∫
(Mn) + C = 3

∫
(2x− 1) = 3 ∗ (2/2x2 − x) + C

C will be +1 in case n is ODD,

C will be −1 in case n is EVEN

So:

M3 = 3x2 − 3x+ 1

And so on.

The Proof is easy and follow the well known integration rules.

Another property of the Gnomons Mn is that:

Mn−1 =
1

n
∗ d

dx
(Mn)

So

M2 =
1

n
∗ d

dx
(Mn) =

1

3
∗ d

dx
(3x2 − 3x+ 1) = 2x− 1
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Chapt.12: How to "LINEARIZE" the n-th Problems

Continuing to show the rules to manipulate the sum without changing the result, I'll show
here how to apply the previous RULES, in a SUM manipulation that allows us to Write
Any POWER of Integers Y = Xn n >= 3 as a SUM of LINEAR TERMS. So we can
easily transform any n-th problem that involves just pure powers, in a linear problem.

I call this method "Linearization" for the reason it involves just linear terms, but also for
other reasons that will be immediately clear once some more rules will be presented.

Rule7: Any N-th power of integers (from n ≥ 3) is equal to a Sum of Linear Terms:

If n is EVEN (n = 2p ; n ≥ 3):

An =
An/2∑
x=1

(2x− 1) (1)

If n is ODD (n = 2p+ 1 ; n ≥ 3) :

An =
A(n−1)/2∑

x=1

(2xA− A) (2)

1) Proof of the Rule7 in case n is EVEN (n=2p)

The only conditions for the (1) is A ∈ N+, so we have:

An = A2p = (Ap)2 = B2 but we know that:

B2 =
B∑

x=1

(2x− 1) =
Ap∑
x=1

(2x− 1) =
An/2∑
x=1

(2x− 1) = An

2) Proof of the Rule7 in case "n" is ODD (n=2p+1) So in this case is possible to
re-arrange the sum to have:

An = A2p+1 = A2p ∗ A

For what we see just above this is equal to:

Ap∑
x=1

(2x− 1) ∗ A =
A(n−1)/2∑

x=1

(2xA− A) = An

So it means that with this "LINEARIZATION" we can transform any Powers Problem in
a Linear System problem. I'll investigate in the Beal conjecture inthe Vol.2, since other
properties has to be shown.
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Linearization is equal to an exchange of variable

Linearization is equal to an exchange of variable, for what is true the following General
Rule, in case we would like to arrive to a Square:

In case of an ODD Power Y = X2m+1 we can write:

Y = X2m+1 = X ∗X2m = X ∗ x2

so the exchange we operate is:

x =

√(
X2m+1

X

)
= Xm

In case of an Even Power:

Y = X2m = X ∗ x2

so the exchange we operate is:

x =

√
X2m

X
=

Xm

√
X

To better understand the consequences of this Exchange of variable we need to investigate
more in the next chapters in the �eld of certain Irrationals.
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How to rewrite a Linearized Odd Power, taking the Base Factor,
into the Index

Following the previous rules is possible to re-arrange the Sum an Odd Power taking the
Base Factor, into the Index, to have:

An =
A(n−1)/2∑
X=1

(2XA− A) =
A(n−1)/2∑
x=1/A

(
2x− 1

A

)
So for example for A = 5 we can write A3 = 125 as:

Table 12: A3 Linearized, Including the Base Factor into the Rational Index
A = 5 A3 = 125 A3 = 125
X 2AX-A SUM x=X/A 2X-1/A SUM
1 5 5 0.2 0.2 0.2
2 15 20 0.4 0.6 0.8
3 25 45 0.6 1 1.8
4 35 80 0.8 1.4 3.2
5 45 125 1 1.8 5
6 1.2 2.2 7.2
7 1.4 2.6 9.8
8 1.6 3 12.8
9 1.8 3.4 16.2
10 2 3.8 20
11 2.2 4.2 24.2
12 2.4 4.6 28.8
13 2.6 5 33.8
14 2.8 5.4 39.2
15 3 5.8 45
16 3.2 6.2 51.2
17 3.4 6.6 57.8
18 3.6 7 64.8
19 3.8 7.4 72.2
20 4 7.8 80
21 4.2 8.2 88.2
22 4.4 8.6 96.8
23 4.6 9 105.8
24 4.8 9.4 115.2
25 5 9.8 125

And from now we can have a big suspect that Fermat is right since rewriting his famous
Equation in sum we now have:

A3 +B3 =?C3

A(n−1)/2∑
x=1/A

(2x− 1/A) +
B(n−1)/2∑
x=1/B

(2x− 1/B) =?
C(n−1)/2∑
x=1/C

(2x− 1/C)

Where we will prove in the Vol.2, there is no way to re-arrange any of the free parameter
to let the Equality holds true in the Rational.
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As usual we can see what we are trying to do on the Cartesian Plane once we paint the 3
Powers as 3 Trapezes:

Still going Rational with the tessellation there is no way to have the equality (the genuine
proof will be given into the Vol.2)
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Chapt.13: From xn to x! via Recursive Di�erence

WI show now how xn is connected to n! due to what (I just discover few months ago) are
known as Nexus Numbers. But I discover also that there are new hidden numbers, you can
call Maruelli's Numbers or The Ghost Nexus Numbers.

Recursive di�erences take us from xn to n!

I hope the above table is readable raw by raw, to see that if we call δ∗ the di�erence be-
tween two raws of the same column:

δ1 = Cx − Cx−1,(remembering that so far we call Mn = δ1 = (xn − (x− 1)n),

going ahead on the same raw, so making the next new columns with the new di�erence be-
tween two following values of the previous column:

δ2 = Dx −Dx−1 ; and th same for δ3...δ(n− 1)

We make the same process we did making the following derivative of a function, till we ar-
rive to a �x value that is n!

The next (last) di�erence is of course Zero.

We also note that all the followings derivative yi holds the same property of the �rst deriva-
tive, so can be squared with a Sum or a Step Sum as shown so far, of course with the right
Gnomon.
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This are (updated from �rst version of this Vol.1) tables of the Recursive Di�erence, where
is possible to see that the behavior of the Last Signi�cative derivative is No longer the
same of the continuous known derivative:

Recursive di�erences take us from xn to n! and over...

As you can see in this tables is also possible to continue the table After the Last Di�er-
ence (that is n!) on the Right with what I'll call The Ghost Nexus Numbers, and the Ghost
Composite Develop, with no limits, suggesting a sort of non symmetric anti-binomial de-
velop (that is for math as a sort of anti-matter, for what I don't know there is a real phys-
ical relation).
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n! as Sum of (n + 1) Power Terms coming from a trick on the Bino-
mial Develop:

From the previous table, so from the Recursive Di�erence Property we can see that in gen-
eral is true that collecting n+ 1 Following Real Numbers build as (p, p− 1, p− 2, ...., p− n)
we can always have back the value of n! using the Tartaglia's triangle (so binomial coe�-
cients) and the following simple exchange of variable:
For any p ∈ R, if n = 2 for example:

p2 − 2(p− 1)2 + (p− 2)2

= p2 − 2(p2 − 2p+ 1) + (p2 − 4p+ 4)

= p2 − (2p2 − 4p+ 2) + (p2 − 4p+ 4)

= p2 + (−2p2 + 4p− 2) + (p2 − 4p+ 4)

= (p2 − 2p2 + p2) + (4p− 4p) + (−2 + 4) = 1 ∗ 2 = 2!

For n = 3

p3 − 3(p− 1)3 + 3(p− 2)3˘(p− 3)3

= p3 − 3(p3 − 3p2 + 3p− 1) + 3(p3 − 6p2 + 12p− 8)− (p3 − 9p2 + 27p− 27)

= p3 − (3p3 − 9p2 + 9p− 3) + (3p3 − 18p2 + 36p− 24)− (p3 − 9p2 + 27p− 27)

= p3 + (−3p3 + 9p2 − 9p+ 3) + (3A3 − 18p2 + 36p− 24) + (−p3 + 9p2˘27p+ 27)

= (p3−3p3+3p3−p3)+(9p2−18p2+9p2)+(−9p+36p−27A)+(3−24+27) = 6 = 1∗2∗3 = 3!

etc... Or using the Known Notation for any p ∈ R:

n! =
n∑

k=0

(
−1k

(
n

k

)
(p− k)n

)
that it's true that for any p ∈ N:

n! =
n∑

k=0

(
(−1)k

(
n

k

) p−k∑
X=1

[Xn − (X − 1)n]

)
and for any p ∈ Q and for some p ∈ R under condition we have seen (remembering that
the Integer K is the one let p ∗ K ∈ N, or the Irrational depending by a known Irrational
(typically an n-th root of an integer), has nothing to do with the integer k of the n over k
notation):
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n! =
n∑

k=0

(−1)k
(
n

k

) p−k∑
x=1/K

Mn,K


(c) Stefano Maruelli
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An as Sum of (A− 1)n and the following Integer derivative:

For a A > n we can have An with the Sum of all the Integer Di�erence ∆1,2,3,...n;A−1 calcu-
late for the row A− 1

For example:

A3 = (A− 1)3 +∆1 +∆2 +∆3|A−1 = [(A− 1)3] + [(3(A− 1)2 − 3(A− 1)+ 1]+ [6(A− 2)] + 6

So if A = 5 ; n = 3 we have:

A3 = [(A−1)3]+[(3(A−1)2−3(A−1)+1]+[6(A−2)]+6 = [(5−1)3]+[(3∗(5−1)2−3∗(5−1)+1]+[6∗(5−2)]+6 = 125

The fact that we need to work with A > n is due to the construction of the Telescop-
ing Sum Triangle: we have zero as di�erence, or di�erent value from n! in the �rst rows
of such triangles.
Nevertheless it is possible to have the right Sum also for little value of A, so for A < n in
some special case, but just if n = Even. Hereafter some example:
So if A = 3 ; n = 4 we have:

34 = (A− 1)4 +∆1 +∆2 +∆3 +∆3|(A−1)=2 = 16 + 15 + 14 + 13 + 12 + 11 = 81

This is not true for example for A = 3 and n = 3, in fact:

33 = 27 ̸= (A− 1)3 +∆1 +∆2 +∆3 +∆3|(A−1)=2 = 8 + 7 + 6 + 5 = 26

and:

33 = 27 ̸= (A− 1)3 +∆1 +∆2 +∆3 +∆3|(A−1)=2 = 8 + 7 + 6 + 5 + 4 = 30
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An in Binary Form as Sum of n! and 1:

From the previous chapters we note, for the property of the Telescoping Sum that Power
of Integers can be written in a Binary Form, so as Sum of n! and 1:

An =

⌊
Xn

n!

⌋
+

⌈
Xn

n!

⌉
= Xn mod n! +Rest

Then one can felt into mistakes that we have a new method to identify n-th Power via
their Class of Rest, but unfortunately, this is False, since in a �nite interval of numbers
there are no number enough to describe an in�nite set of other numbers, And I think can
be true just in case we make a test for the Rest are in the form 2m we can always �nd in
the case n = 2.

Unfortunately, as you can see not all the Rest are di�erent, as we can espect since n! is
wide, but not enough to include the Set of all the Integers...

The question for the reader is: are just 22m the problems ?



126

Table 13: The Rest Modulo n! for X2, X3, X4

X X2 FLOOR REST X X3 FLOOR REST X X4 FLOOR REST
1 1 0 1 1 1 0 1 1 1 0 1
2 4 2 2 2 8 1 7 2 16 0 16
3 9 4 5 3 27 4 23 3 81 3 78
4 16 8 8 4 64 10 54 4 256 10 246
5 25 12 13 5 125 20 105 5 625 26 599
6 36 18 18 6 216 36 180 6 1296 54 1242
7 49 24 25 7 343 57 286 7 2401 100 2301
8 64 32 32 8 512 85 427 8 4096 170 3926
9 81 40 41 9 729 121 608 9 6561 273 6288
10 100 50 50 10 1000 166 834 10 10000 416 9584
11 121 60 61 11 1331 221 1110 11 14641 610 14031
12 144 72 72 12 1728 288 1440 12 20736 864 19872
13 169 84 85 13 2197 366 1831 13 28561 1190 27371
14 196 98 98 14 2744 457 2287 14 38416 1600 36816
15 225 112 113 15 3375 562 2813 15 50625 2109 48516
16 256 128 128 16 4096 682 3414 16 65536 2730 62806
17 289 144 145 17 4913 818 4095 17 83521 3480 80041
18 324 162 162 18 5832 972 4860 18 104976 4374 100602
19 361 180 181 19 6859 1143 5716 19 130321 5430 124891
20 400 200 200 20 8000 1333 6667 20 160000 6666 153334
21 441 220 221 21 9261 1543 7718 21 194481 8103 186378
22 484 242 242 22 10648 1774 8874 22 234256 9760 224496
23 529 264 265 23 12167 2027 10140 23 279841 11660 268181
24 576 288 288 24 13824 2304 11520 24 331776 13824 317952
25 625 312 313 25 15625 2604 13021 25 390625 16276 374349
26 676 338 338 26 17576 2929 14647 26 456976 19040 437936
27 729 364 365 27 19683 3280 16403 27 531441 22143 509298
28 784 392 392 28 21952 3658 18294 28 614656 25610 589046
29 841 420 421 29 24389 4064 20325 29 707281 29470 677811
30 900 450 450 30 27000 4500 22500 30 810000 33750 776250
31 961 480 481 31 29791 4965 24826 31 923521 38480 885041
32 1024 512 512 32 32768 5461 27307 32 1048576 43690 1004886
33 1089 544 545 33 35937 5989 29948 33 1185921 49413 1136508
34 1156 578 578 34 39304 6550 32754 34 1336336 55680 1280656
35 1225 612 613 35 42875 7145 35730 35 1500625 62526 1438099
36 1296 648 648 36 46656 7776 38880 36 1679616 69984 1609632



127

Table 14: The Rest Modulo n! for X5, X6

X X5 FLOOR REST X X6 FLOOR REST
1 1 0 1 1 1 0 1
2 32 0 32 2 64 0 64
3 243 2 241 3 729 1 728
4 1024 8 1016 4 4096 5 4091
5 3125 26 3099 5 15625 21 15604
6 7776 64 7712 6 46656 64 46592
7 16807 140 16667 7 117649 163 117486
8 32768 273 32495 8 262144 364 261780
9 59049 492 58557 9 531441 738 530703
10 100000 833 99167 10 1000000 1388 998612
11 161051 1342 159709 11 1771561 2460 1769101
12 248832 2073 246759 12 2985984 4147 2981837
13 371293 3094 368199 13 4826809 6703 4820106
14 537824 4481 533343 14 7529536 10457 7519079
15 759375 6328 753047 15 11390625 15820 11374805
16 1048576 8738 1039838 16 16777216 23301 16753915
17 1419857 11832 1408025 17 24137569 33524 24104045
18 1889568 15746 1873822 18 34012224 47239 33964985
19 2476099 20634 2455465 19 47045881 65341 46980540
20 3200000 26666 3173334 20 64000000 88888 63911112
21 4084101 34034 4050067 21 85766121 119119 85647002
22 5153632 42946 5110686 22 113379904 157472 113222432
23 6436343 53636 6382707 23 148035889 205605 147830284
24 7962624 66355 7896269 24 191102976 265420 190837556
25 9765625 81380 9684245 25 244140625 339084 243801541
26 11881376 99011 11782365 26 308915776 429049 308486727
27 14348907 119574 14229333 27 387420489 538084 386882405
28 17210368 143419 17066949 28 481890304 669292 481221012
29 20511149 170926 20340223 29 594823321 826143 593997178
30 24300000 202500 24097500 30 729000000 1012500 727987500
31 28629151 238576 28390575 31 887503681 1232644 886271037
32 33554432 279620 33274812 32 1073741824 1491308 1072250516
33 39135393 326128 38809265 33 1291467969 1793705 1289674264
34 45435424 378628 45056796 34 1544804416 2145561 1542658855
35 52521875 437682 52084193 35 1838265625 2553146 1835712479
36 60466176 503884 59962292 36 2176782336 3023308 2173759028
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Chapt.14: The Integer Derivative Formulas, for Y = Xn curve

The Integer derivative function is not the same of the Classic One, in fact as we can imme-
diately see that on the table:

We cannot apply the classic derivation Rule to pass from the integer First derivative Delta1
(δ1) to to the Second derivative Delta2 (δ2) using the Known Derivation Rules. So:

δ1 = 3X2 − 3X + 1 and d
dx

(δ1) = 6x− 3 ̸= δ2

So we need to investigate in such di�erence to better understand how the Integer deriva-
tive behave respect to X

Starting to see, as an example, what happens for n = 3 we can see that for the First Dif-
ference (the initial di�erence, me and Mr. Nexus, forgot to consider) we cannot apply the
Same Rule of the Rest of the Column. The number of the initial "strange" di�erence, seems
not obeying at any distribution law, Depends on 3 variables:

- the n-th Degree of Y = Xn we are considering

- the n-th Delta we are considering (δ1, δ2, δ3... etc...)

- the n-th Row we are considering (X=1, X=2.... etc....

So for example for n = 3:

δ1 = 3X2 − 3X + 1 (do not depends by other factors than X)

δ21 = 1 - δ22>.. = 6(X − 1)

And for Delta3:

δ31 = 1 - δ31 = 5 - δ33>.. = 6

As we can see the things becomes more complicate rising n since there will be more Inte-
ger Derivative Initial Gnomons:
So for example for n = 4:



129

δ1 = 4X3 − 6X2 + 4X − 1 (do not depend by other factors than X)

δ21 = 1 - δ22>.. = 12(X − 1)2 + 2

And for Delta3:

δ31 = 1 - δ31 = 5 - δ33>.. = 6

For the complete sequence see: http://oeis.org/A101104
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Chapt.15: The Ghost Nexus Numbers, and the Ghost Composite
Develop

What is interesting is that the new "information", once read by Columns, becomes the co-
e�cient of a New Composite Develop:

In case n= 3 they are the equals of the Newton's like develop for a "composite" power:

Delta5:
1 3 -3 -1
are the coe�cient for:

x3 + 3x2 − 3x− 1 = 0

or:

(x− 1) ∗ (x2 + 4x+ 1) = 0

In case n= Even they are the equals of the Newtons develop for what we can call a "Com-
posite Non Perfect Power":

For example n=4

Delta7
1 9 -10 -10 9 1
is:

x5 + 9x4 − 10x3 − 10x2 + 9x+ 1 = 0

or:

(x− 1)2 ∗ (x+ 1) ∗ (x2 + 10x+ 1) = 0

Interesting is that this is in relation with:

Delta6

1 10 0 -10 -1
that is:

x4 + 10x4 − 10x− 1 = 0

or

(x− 1)(x+ 1)(x2 + 10x+ 1) = 0

And of course also with

Delta8

1 8 -19 0 19 -8 -1
or:
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(x− 1)3(x+ 1)(x2 + 10x+ 1) = 0

.... and in�nite more new ones we have no time here to better investigate nor de�ne...

The Last Linear Integer derivative

What is also interesting is to see that the equation for The Last Linear Integer derivative
yL is:

yL = n!x− n!/2

This, of course will have a big relevance into Fermat the last Theorem proof and in other
similar problems.
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Chapt.16: Lebesgue Integer/Rational Integration via Sum and Step
Sum

All I did for my modi�ed Riemann's Sum till the Integral can be adjusted for what I call
my Lebesgue's (Like) Sum and Integral.

Remembering Lebesgue Sum can uses Longitudinal Bars instead of Vertical ones (plus
other properties that at the moment we will not investigate), we have just to search for
the proper Horizontal Gnomon I'll call Mn,y.

If you remember I've already said that once we use Rational for n > 2 we lose invertible
property, so there is no way to �nd a non recursive dependence of the new Y − Gnomons
from X and so the new Gnomons function Mn,y is no longer a monotone rising function:
that means that for n > 2 the Gnomons function Mn we saw so far, is not invertible.

Taking a look to the picture, remembering what we said in the previous chapters, it's clear
we can square the area below the derivative, in the Lebesgue's direction, using a recursive
path for the Height of the new Mn,y Gnomon:

An =
A∑

x=1

((M(n)|X −M(n)|X1)(A+ 1−X))

where:

M(n)|x - is the well known Complicate Integer Modulus calculated for each single value of x

M(n)|x−1 - is the Complicate Integer Modulus calculated for the single value of x− 1

The Lebesgue Integer / Rational Sum can also work in the Rational REMEMBERING to
put x = X/k :

An =
A∑

x=1/K

((M(n,k)|x −M(n,k)|x−1)(AK + 1−Kx))

where:

M(n,k)|x - is the well known Complicate Rational Modulus (K dependent) calculated for the
single value of x

M(n,k)|x−1 - is the well known Complicate Rational Modulus (K dependent) calculated for
the single value of x− 1

And of course is possible to go to the limit, having the Integral:

An = lim
K→∞

A∑
x=1/K

((M(n,k)|x −M(n,k)|x−1)(AK − 1 +Kx)) =

∫ A

0

nxn−1dx
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Here in the graph what happens in the integers for n = 3...

As we can see we do not square using a linear Delta2y, where Delta2y is the di�erence be-
tween two following Gnomons Mn|x and Mn|x−1

I hope will not soo hard to prove there is no other way to do that... since the Integer /
Rational derivative is a non invertible function.

Here an example of Lebesgue Integer Integration for n=3
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A3 =
A∑

x=1

((3x2 − 3x+ 1)|x − (3x2 − 3x+ 1)|x−1)(A+ 1− x))

We can immediately see that just in case n = 2, with a linear derivative we have (If we
exclude the �rst Gnomon) Both LINEAR Mn and Mn,y Gnomons

The concerning on this let me found a new family of triangles for An. you can �nd two ex-
amples on: www.oeis.org

http://oeis.org/A276158

http://oeis.org/A276189

Here an example for n = 2, n = 3 and n = 4:

Powers as a Lebesgue Sum of integers. For Example 23 = 8 = 2 + 6; 33 = 8 = 3 + 12 + 12
etc...

http://oeis.org/A276158
http://oeis.org/A276189
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Here the A276158 sequence with the generating formula:

To have a(m)n just sum all the terms of a line. For example to have 73:
73 = 7 + 36 + 60 + 72 + 72 + 60 + 36 = 343
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The general formula for the Mn, y Gnomons is:

Mn, y = (Mn|x −Mn|x−1)(A+ 1− x))

So the general Power of an integer A can be written as:

An =
A∑

x=1

(Mn|x −Mn|x−1)(A+ 1− x))

We can immediately see that just in case n = 2, with a linear derivative we have Both
LINEAR Mn and Mn,y Gnomons, so in this case only, we can invert the Integer / Rational
derivative.

As shown for the Nexus Numbers, also here the table can be continued, showing its Sym-
metrical Behavior:
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While it is clear that for a Line the Balancing Point is the same of the Medium Point both
on x and in y: BPi = MPi = (xi,1/2, yi,1/2

We will see in the Vol.2 what happen if we try to �x di�erent conditions (like Fermat's
one) on a derivative that is a Line, or a Curve (n > 2).
I'll follow 2 ways: both will look in how BP is geometrically �xed, the �rst one involve
simple concerning on the relative position of BP respect to known things: the Medium (or
Center) Point MP , the second one will show that we can pack Xm

We can immediately make some concerning on:

- we know from Telescoping Sum Property that for any derivative (also the following) the
Exceeding Area A+ will equate the Missing one A−, without going out of Integer numbers
and Proportional Areas,

- but once we ask how much the value of such areas is the only way to calculate them is to
go in�nitesimal and make the integral.

And this is due to what I call the In�nite Descent, that is not what Fermat discover so
what is actually known under that name, but there is no way to better call this in�nite
process of approaching to an existing limit:

if we try to change the scale of the picture zooming in, we will see that still if we continu-
ous to zoom in, so we keep Xi+1 closer and closer to Xi, the condition that �x Xm rest an
inequality that told us just r > q. But since we know Xm exist and it can be rise at the
limit after in�nite zooming in, than we prove Xm for all the curved derivative is an Irra-
tional Value.

This is in fact the process known as Dedekind Cut. It sound like an Axiom, but it is now
well proved.

All the work of the Vol.2 will be dedicated to problems involving powers, and the new way
o�ered by this new method of investigating powers via Complicate Modulus.
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Chapt. 17: What PARTIAL SUMs are

We have not all the knowledge to produce a New more general type of Summations I've
called PARTIAL SUMs or Magic Sums since the results will often be an unpredictable
surprise.
Partial Sums (here de�ned in their �rst basic version) are de�ned as:
Sums of values coming from a CARRIER FUNCTION, calculated for a value
called MODULATOR.
The CarrierFunction can be a continuous function, the MODULATOR is the set I of
the point on witch we calculate the Modulator Function, so the internal Terms of the Sum.

As shown in the previous chapters, I extent the concept of a classic SUM with Integers In-
dex, as much as possible, to work with Rational and Irrationals too, but there is a big free-
dom in creating the elements that will builds the set of the Index I.

I hope you try with on a simple .XLS �le how powerful will be this "new" instrument.

The basic concept is to create a Sum of the type:

A =
∑
x∈I

f(x)

Where:

- The elements of the set I are the x ∈ D, where D is a De�nite Domain, be it under the
previous rules N, Qor R, or one of their Sub Set, and it is used instead of the classic inte-
ger Index i

- The set I is build using a known Function, called MODULATOR here for example x =
sin(x/10)

- The internal term in the Sum is called: CARRIER and will be calculated at the values
coming from the Modulator.

- The result will be very interesting because sometimes unexpected.
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PARTIAL SUM produces MAGIC EFFECTS:

I present here just few example of how strange will be the result of this PARTIAL SUM,
suggesting you to create your own example and also try to imagine the connection for chaos
theory and Qbit behavior...

Example 1:

As CARRIER here we put the "Gnomon" (2x − 1) (I remember it is the Gnomon of the
Square function y = x2)

As MODULATOR here we keep: x = sin(x/10), where x = 1, 2, 3.....x ∈ N+

So we will see what will happen if we Sum the value coming from the sin of a Rational an-
gles: 0.1, 0.2,....x/10.

In the picture the (interpolated) Carrier in Red and in Blue the (interpolated) result of
the Sum.
One can expect that the result of the Sum will diverge but, vice versa it holds bounded.
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Example 2:

CARRIER = 2x− 1

MODULATOR = a collection of Rational Value given simply dividing by 50 the set of x ∈
N+, than applying the TAN function.

Again not so predictable graph will appears.

Example 3:

CARRIER = 2x− 1

MODULATOR = a collection of Rational Value x = x/10 with x ∈ N+,

than applying the function: SIN(x)2 function.
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Example 4:

CARRIER = (2x− 1)

MODULATOR = a collection of Rational Value x = x/100 with x ∈ N+,

than applying the function: SIN(x)2

Here seems that with the interpolation of the value don't change lot the known SIN be-
havior.

Example 5:

CARRIER = (2x− 1)

MODULATOR = a collection of Rational Value given simply dividing by 100 each Prime
Numbers only, so x = π(i)/100

than applying the function: SIN(x)2. "Random" or "Noise" behavior here is well expected.
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Example 6:

CARRIER = (2x− 1)

MODULATOR = is a collection of Rational Value given simply dividing by 100 the set of
Prime Numbers only, x = π(i)/100

than applying the function: x = (xLn(x)). A sort of Filter e�ect is shown.

As you can see the Square Gnomon Carrier (2x − 1) produce lot of interesting behavior
once in relation with trigonometric functions we know depends on the square function. I
hope all this will be interesting for those are studying the Qbit behavior since it can prob-
ably give some information on how to �nd information in what actually is supposed chaos.
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Chapt. 18: Squaring Known Curves with Gnomons:

Gnomons can be used to square, with approximation, several curves.

All is born considering the telescoping sum property for Y = Xn derivative, and in that
case it don't care if you stretch the scale of x, it means how far is 1 from 0 in the x, re-
spect to how far is 1 form 0 in y.

As shown in the �rst chapters, nothing change in the result of the Summation (till the in-
tegral) if you move step 1 or step 1/K or dx, don't care how wide are Gnomons and for so
you can make the variable exchange to x = X/K to square the curve Y ′ = nXn−1 with the
width you prefer / need.

While in general for other curves this will not happen and the Integral is littlest / big-
ger than the Gnomons area depending witch value we choose for the Integer / Rational
Height. Here I present few example to show how interesting is this research for math and
physics since it show some interesting result of di�erent ways to measuring the same un-
measurable things.

1) Gnomons over Hyperbole

If you try to cover the 1st quadrant Hyperbole's area, so the area bellow Y = 1/X curve,
with Gnomons given by Y = 1/⌊x⌋, you can see that Gnomon's Area is bigger than the
one bellow the Y = 1/X curve, due to the obvious fact that it is a continuous sinking
function that do not have the same properties of the Parabolas.

If we keep the Base of the Gnomons equal to 1, the di�erence between the area bellow the
curve and the one of the Gnomons is the well known Euler-Mascheroni constant:

γ = lim
n→∞

(
− lnn+

n∑
k=1

1

k

)
=

∫ ∞

1

(
1

⌊x⌋
− 1

x

)
dx. (3)
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Now we make here the process I've already shown for parabolas, to pass from Sum to Inte-
gral, so you will change x = X/K in the Sum (adjusting the limit as shown in my trick),
than you will see that the area bellow your Gnomons decreases rising K, till you've at the
limit for K → ∞ exactly the area bellow Y = 1/X curve.

So in other terms Y = 1/X derivative is characterized by γ∗ = 0

Where γ∗ is a new more general value (and not just Eulero's constant) representing the
goodness of the approximation.

Rising K the area of the Gnomons go closer and closer to the one of y = 1/x. In the ex-
ample K=1 (the di�erence between the areas correspond to the known γ) and K=3 (that
produce a new γ∗ or γ∗K), and for K → ∞ the two areas are equal and γ∞ = 0).

So γ∗ is a new toy, and several, more deep, concerning will follows.

Once again we can chose Upper Gnomons (as in the example), or Lower Gnomons and see
that at the limit for K → ∞ are both equal.

What is already known and clear is that the precision of the measure depends on the Right
precision of the instrument we use, so depends on witch K we choose, but a bigger K is
not an insurance of a better measure.

This will be more clear if we compare the result of the PC error just in case we Sum ex-
actly the areas of the Gnomons given by the Integral, having for example base a fraction
of e. Still if e is an approximated value, than the Integral is not precise too, cutting it in
several columns of are equal to the approximated integral area, the Sum is not a�ected by
a signi�cant error in term of PC digits: in fact the result is the same for the whole inte-
gral, and for the whole sum of columns, independently from how many (1, 10, 10 or 1000)
are them. Probably to see some signi�cant digit we have to rise lot the number of columns,
while for the approximated Rational Gnomons the error rises/fells lot.

Here one example using K=10, 100, 1000. No di�erence from Log(P ) and the Sum of 10,
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100 or 1000 partial value of the integral. To have signi�cant errors we have probably to
rise lot K.
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2) Gnomons over Ellipse

See the above integration via Step Sum of a quarter of an Ellipse:

Something of very interesting will happen rising K: while one expect that the precision of
the measure will rise continuously, it is false due to the Sum of Approximation done by the
PC so:

- From K=10 to K = 20 the error fells lot

- from K=20 to K = 50 is quasi linear but:

- K = 50 gives a better result than K = 60, and this is a very big problem for physics
study. In this case 10 times more precise instrument gives better precision in the measure,
but it is not always an insurance...

In the next page the Table with numbers and the Graph of the Error.
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Something of very interesting will happen rising K: while one expect that the precision
of the measure will rise continuously, but as seen into the chart this is false, and I left the
investigate on to understand why.

Is not hard to imagine why we de�ne caos, or non deterministic, most of the nature events...
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Chapt.19: The General n-th degree Equation Solving Algorithm:

To better understand the power of our Two Hand Clock, I'll present here a short example
of how we can use it to solve also problems involving more than one Power, and or mixed
terms, constant, so what we call Polynomial equations. Any Polynomial Equation of Any
Degree.

It is proved true that a General Algorithm for solving ALL the n-th equations doesn't ex-
ist, due to the "Radical Closure", in other words there is no Radical Solution to any higher
degree equation using the Known Multiplicative Algebra, but using my Additive Alge-
bra, and understanding what a Radical is, in its general, most wide, de�nition, the prob-
lem vanish (but unfortunately it do not solve all the equations because some rest non re-
ductible).

Living to someone else to debate if what I'll present is a Numerical Solution, or a more
general concept for extract Radicals also from what is not a perfect power, just, so any
Root of a Polynomial Equation, I'll present you here the simple methos to �nd the roots
to Any Degree Equation (must be clear that sometimes works and sometimes not !).

A) The General Solving Method using CMA: There is a General Solving

Method for Polynomial equations using my CMA, it means that there is a More General
Concept of what a Radical is: not just the result of the n.th root, coming from a special
polynomial equation of the type: Xn = const, but any root coming from any n-th degree
polynomial equation.

To extract Roots from Any Polynomial n-th Degree Equation you simply:

- Transform Any Power Term of the Polynomial Equation into a Sum from 1 to Rx if you're
searching for integer solutions, or from 1/K to Rx if you're looking for Rational ones,

where Rx is ANY Root of such equation

Using the appropriate Complicate Real Mn,K or Imaginary Modulus Mn,K,i (in case the
constant term is negative)

Then applying the Sum Properties you can Sum all the Terms of the Sums having back
the solving (no always!) Polynomial (is our Integer or Rational derivative).

This Sum is the Algebraic representation of your equation, and sometimes exactly returns
you any Integer or Rational Roots of the equation.

Imaginary Roots are not yet investigated enough at this time.

So with this new General Root Extractor (Algo, if it works) you will have back any of the
Integer or Rational or Algebraic Irrational or imaginary Roots Rx∗ you're looking for.

Where |Rx ∗ | is of course a Rational Number, but also at the Limit for K → ∞ any Real
Root (or zero) Rx coming from the Integral. So this Algo has no limits in its application,
but of course the computation will truncate the numerical result of the Root in case it is
an Irrational or a long Rational.
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I start with the �rst most simple example of how to �nd the Roosts of a 2th degree equa-
tion:

X2 − 5X + 6 = 0

1) We put:

X2 =
Rx∗∑
1/K

(2X − 1)

2) then we put:

5X = 5 ∗
Rx∗∑
1/K

(1) =
Rx∗∑
1/K

(5)

3) We can Sum all the terms with their sign under a single Sum, since the Upper Limit is
the Same:

Rx∗∑
1/K

(2X − 6) = −6

4) So any Integer / Rational / Irrational, Positive or Negative Root of the Polynomial Equa-
tion X2 − 5X + 6 = 0

will comes from the vice versa of the Sum, so as a Result of Recursive di�erence, so any
time in the recursive di�erence we get a Rest equal to zero:

What is interesting here is that in some special case one Root is also the Root of First Ra-
tional derivative, infact for X = 3 we can have a root just in case the result of the single
line computation is again zero so if:

(2X − 6) = −6
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that of course has X = 3 as solution.

So as we well know we can write:

X2 − 5X + 6 = 0− > (X − 2) ∗ (X − 3) = 0

It is not hard to imagine why we de�ne chaos, or non deterministic, most of the nature
events...
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How the trick works on Higher Degree Equation:

Here a more interesting example of the Most Famous Unsolvable 5th Degree Equation X5−
X + 1 = 0

transforming each unknown in a Sum till the Unknown Upper Limit is the Integer or Ra-
tional or an Algebraic Irrational Root Rx∗

close to the Real one is Rx, we can write, with precision K = 10m:

X5 −X = −1 =⇒
Rx∗∑
1/K

M5,K,i −M1,K,i = −1

We will have for so Two type of solutions:

- Integers and Rationals with a �nite number of digits comes in the Computational Total
Precision, so Rx∗ = Rx,

- while the other will be an approximation till the maximum precision we are able to raise
with our computer, so with our maximum K, and Rx∗ < Rx.

In the above example we have de�ned a new Imaginary Speci�c Complicate Modulus, Mx5−x,K,i

Algebraically solve this quintic equation:

x5 − x = −1 =⇒ lim
K→∞

Rx∑
1/K

Mx5−x,K,i = −1

Of course the technical problem is that you must be capable to work with many signi�ca-
tive digits, to have the desired precisions for the root.

Here is WOLFRAM solution:
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And here is in the example keeping K = 10m = 104 we get back exactly 4 correct digits
(pls note that each digit you get rising m of 1, will be an exact decimal, one, not an ap-
proximated one).

The solution obey to this proven rule, is , theoretically due to the Algebraic construction
of the solution, capable aslo to work till the limit for K → ∞ with an in�nite number
of digit, so it is not an approximation (that is just a technical problem as the same hap-
pens when you've as result f.ex.

√
2 and you've to show the value of the numerical result

so someone).

Returning to our example, the Solvable Quintic: the Modulus we must use to �nd the Roots
in the Recursive Di�erence from the known constant, here: −1 looking to have Rest = 0
(or as close to zero as we can in case of Irrational Roots) is:

Mx5−x,K,i = −5 ∗ x4

K
+ 10 ∗ x3

K2
− 10 ∗ x2

K3
+ 5 ∗ x

K4
− 2

K5

That di�ers from the 5th line of the Tartaglia's triangle M5,K,i (represent X
5), for the last

term, just, since we have to add with the right sign M1,K,i (represent X), that is the con-
stant 1

K
summed K times.

And still if the Number Rx∗ represent the Closest Rational to an irrational Solution comes
from a long computation of very long Rational digit numbers, we can a�rm that we can
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always �nd any Rx Root, using what I hope is clear now is a more General Root (Alge-
braic) Extractor (GRE theorem).

So the point is: I've produced a new more general de�nition for a Radical Root, �nding a
General Polynomial Root Extractor that can works on any Polynomial and the classic n-th
Root algo that is capable to work (in general) just on Hypercube, is just a sub class of this
General Polynomial Root Extractor.

Unfortunately the GRE method can works on any polynomial equation, but NOT ANY
EQUATION will produce a �rst integer derivative that has the same zero of the original
equation.

Here is the case of:

(x− 1)(x− 2)(x− 3)(x− 5)(x− 7) = 0

that lead to a rest of −4 instead of the �rst zero, as soon as you start the descent, and
then no more zeros will appear:
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Here 2 example of Quintic we can solve via this algo:

((x− 1)(x− 3)(x− 5)(x− 7)(x− 13))

and is:

x5 − 29x4 + 294x3 − 1294x2 + 2393x− 1365

that has as �rst integer derivative (or general polynomial extractor):

5x4 − 126x3 + 1066x2 − 3591x+ 4011

The second comes from:

((x− 1)(x− 3)(x− 5)(x− 7)(x− 17))

and is:

x5 − 33x4 + 358x3 − 1638x2 + 3097x− 1785

that has as �rst integer derivative (or general polynomial extractor):

5x4 − 142x3 + 1282x2 − 4487x+ 5127

Here the recursive di�erence show zeros:

How to obtain the 1st integer derivative in both case:
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I left here also my �rst tricks to solve some easy n-th degree equations.

There are no big news in this method, that is quite trivial, due to the fact that is the same,
or worst, in terms of computation load, to check for the solution of a polynomial, checking
every possible Integer Root from 1 to the biggest possible Root, but it can be interesting
to better search for the reasons let this works, and how - if, it can gives us some Rational
- Algebraic Irrational Root too, once we will use the Mn,K Rational Modulus, will also re-
de�ne what we call an Algebraic Root.

Hereafter a simple example of one of the possible solving method for a Polynomial equa-
tion of 3th degree.

B) How to �nd the integer Roots of 3th degree polynomial:

X3 − 10X2 + 31X − 30 = 0

using the balancing method, so moving terms in both side.

Here we start with:

X3 = 10X2 − 31X + 30

First of all remember the Sum property X3 =
∑X

1 3i2 − 3i+ 1 ,

and the Linearization Rule here for n = 3 (Remember in the Vol.1 there is the general rule
for all n=odd and the one one for all n=even), so we can write the Left Hand Term as:
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X3 = X ∗
X∑
1

2i− 1

Than we look for the �rst integer root: R1=X, so we can write, remembering that x2 =∑x
1(2i− 1) :

R1 ∗
R1∑
i=1

2i− 1 = 10 ∗
R1∑
1

(2i− 1) + 30− 31 ∗R1

so taking the squares in the same hand:

(10−R1) ∗
R1∑
1

2i− 1 = 31R1− 30

So we immediately can see that the Biggest Root is bounded:
Max Root Value (10− 1) = 9
and we have for so to solve the Complicate Modulus Equation:

R1∑
1

2i− 1 = (31R1− 30)/(10−R1)

Remembering we can extract the Square Root (from anywhere) using my Recursive Di�er-
ence (so subtracting 2i− 1 terms from 1 to Rx)
We start the solving algo:

((31R1− 30)/(10−R1))− (2i− 1)|i = 1 =?0

- So we perform the 1st turn subtracting: (2i− 1)|i = 1 = 1

((31R1− 30)/(10−R1))− 1 =?0 (a1)

((31R1− 30− 10 +R1)/(10−R1))) =?0

(32R1− 40)/(10−R1) =?0 (a2)

taking out the easy factors:

8(4R1− 5)/(10−R1) =?0

let us see that no integer solution is possible, So we go on:
-So we perform the 2nd turn subtracting: (2i− 1)|i = 2 = 3 FROM THE (a2)

((32R1− 40)/(10−R1))− 3 =?0

((32R1− 40− 30 + 3R1)/(10−R1))) =?0

(35R1− 70)/(10−R1) =?0 (a3)

taking out the easy factors:
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35(R1− 2)/(10−R1) =?0

Let us see that R1=2 is the 1st Integer Root.
but we can go over since we se Rx is bounded by the Max Root Value (10− 1) = 9
-So we perform the 3th turn: (2i− 1)|i = 3 = 5 FROM THE (a3), looking this time for the
2nd root R2:

(35R2− 70)/(10−R2)− 5 =?0

((35R2− 70− 50 + 5R2)/(10−R2))) =?0

(40R2− 120)/(10−R2) =?0 (a4)

taking easy out the factors:

40(R2− 3)/(10−R2) =?0

Let us see that R2 = 3 is the Second Integer Root.

And we can, of course, go ahead since we see R3 is bounded by the Max Root Value (10 −
1) = 9

So we �nally �nd all the 3 Integer Roots, if any.
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C) How to �nd the integer Roots of bigger degree polynomial:

To proceed we need a more powerful method (still very trivial !): for example we can use
the property starts all this work:

Each Square of an integer A, is the Sum of the First "A" Odds, so we can rewrite the equa-
tion:

x4 − 11x3 + 41x2 − 61x+ 30 = 0

as:

x2 ∗ (x2 − 11x+ 41) = 61x− 30

x2 = 61x− 30/(x2 − 11x+ 41)

Ad now start to search for the solutions remembering that each Root of the Polynomial is
Equal to One of our Zeros, when we subtract 1,3,5,...(2a-1), each time one of this Number
take the result of the Recursive Di�erence to Zero, it return us the Root of the Polyno-
mial. So �rst turn is check if:

61x− 30

(x2 − 11x+ 41)
− 1 =?0

Solving we have:

(61x− 30)− 1 ∗ (x2 − 11x+ 41)

(x2 − 11x+ 41)
=?0 (1)

61x− 30− x2 + 11x− 41 =?0

−x2 + 72x− 71 =?0

So in the classic form (where one root will not be acceptable):

x2 − 72x+ 71 =?0

72± 2
√
722 − 4 ∗ 71
2

=
72± 70

2
= 1; (or : 71)

So yes R1 = 1 is our �rst Root. Then we can subtract from the (1) the next Gnomon
(2i− 1)|i = 2

(−x2 + 72x− 71)− 3 ∗ (x2 − 11x+ 41) =?0 (2)

−x2 + 72x− 71− 3x2 + 33x− 123 =?0

−4x2 + 105x− 194 =?0

That we can return in the classic form:

4x2 − 105x+ 194 =?0



159

105± 2
√
1052 − 4 ∗ 4 ∗ 194

8
=

105± 89

8
= 2; (or : 24, 25....)

The same for the following roots...
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Of course nothing change if we use the property that a Cube is the Sum of the
following M3 = (x3 − (x− 1)3) Gnomons:

x3 ∗ (x− 11x) = −41x2 + 61x− 30

So we can check if holds true that:

x3 =
−41x2 + 61x− 30

(x− 11)
− 1 =?0

−41x2 + 61x− 30− 1 ∗ (x− 11) =?0

41x2 − 60x+ 19 =?0

60± 2
√
602 − 4 ∗ 41 ∗ 19

82
=

60± 22

82
= 1; (or : 19/41)

I write here an example of how to solve the case n = 5:

x5 − 18x4 + 118x3 − 348x2 + 457x− 210 = 0

Can be reduced to:

x3 ∗ (x2 − 18x+ 118) = 348x2 − 457x+ 210

so we can start from R1 = 1 our search so if:

348x2 − 457x+ 210− 1 ∗ (x2 − 18x+ 118) =?0

347x2 − 439x+ 92 =?0

439± 2
√
4392 − 4 ∗ 347 ∗ 92
2 ∗ 347

=
439± 255

2 ∗ 347
= 1; (or : 92/347)

...and of course we can go ahead searching for the next Roots.

We can go ahead ab in�nitum ? Unfortunately, of course, Not, due to what is known as
the Radical Closure, and the fact that we are using as �nal solving equation the Square, or
the Cubic Solving formula.

...BUT WE CAN CHEAT and go ahead for n > 5 !!! You can't believe ? Just remember
that if R1 = 1 then

x6 − 24x5 + 226x4 − 1056x3 + 2545x2 − 2952X + 1260 = 0

is equal to write:

24x5 − 226x4 + 1056x3 − 2545x2 + 2952X − 1260 = 16

So:
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24x5 − 226x4 + 1056x3 − 2545x2 + 2952X − 1261 = 0

we can solve as the last quintic here above:

x3(24x2 − 226x+ 1056) = 2545x2 − 2952X + 1261

2545x2 − 2952X + 1261− 1 ∗ (24x2 − 226x+ 1056) =?0

2521x2 − 2726X + 205 = 0

2726± 2
√
27262 − 4 ∗ 2521 ∗ 205
2 ∗ 2521

=
2726± 2316

2 ∗ 2521
= 1; (or : 205/2521)

etc....

Moreover, any Ring has the same properties shown here for Polinomials, will lead to simi-
lar zeros, or Roots. But this will require an Abstract Algebra discussion that is not what I
would like to do here, since my purphose is to introduce young students to a new point of
view or the known classic algebra.

For those will immediately argue that this is a Numerical Solution, I answer that this is an
Algebraic solution, and also the extraction of a known n-th Root, i prove is a special case
of this more general one, at the end of a solvable equation, will require, in non trivial case,
tables or a Numerical computtion to extract the root or the n-th root.

So I hope I've proved here that the concept of Root is much wider and lead to new inter-
esting simple results can be presented without any abstract de�nition of Groups / Rings /
Ideals etc...
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Chapt.20: The New Complicated Risen Modulus Mn+

To left unchanged the result of a sum:

P n =
P∑
1

3X2 − 3X + 1

Lowering the Upper Limit, from P to p

Imply we Must Rise All the Terms of (for example here) M3 of a scaling factor (as seen)
P/p

Or, and this is what is interesting, to use a new one we will call M3+, using an "unknown"
method, we imagine will depends on how the Complicate Modulus Mn is build, and be-
have, moving backward.

In this case can be useful the develop of ((X + 1)n −Xn) since (in this case) it leads to the
�rst approximation for M3+:

since it is the sum of the Known modulus M3 and of the Second derivative Y ′′ = 6x or:

M3+ = M3 + Y ′′ = M3 + 6X = 3X2 + 3X + 1

But this Linear Shift is not enough since we know the Second Integer derivative for n = 3
is Y ′′

i = 6X − 6,

than the next following terms will depends on the Second Integer derivative Y ′′
i = 6X − 6,

where we have now to change X = (x− 1)

So the Shift (given by the variable exchange), imply we need to use also another Riser Term
equal (for n = 3) to:

Y ′′
i,δ = 6(x− 1) + 6

But as we saw on the Table, the Modi�cation of All the Terms using this Two Modular
Parameter, IS NOT ENOUGH to Rise To the Genuine Power, since using the new M3+,δ

modulus, we need to introduce a ONE TIME Correction PARAMETER we know is the
Rest = R, that introduce the correction for the removed terms, so is equal to δn.

As shown in the Tables in this case δ3 = 1, 8, 27, 64....:
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Here the table of what happen Lowering the Upper Limit of 1,2,3 and 4.

As we immediately see, using the Induction, will be possible to build and prove all the
next case for higher δ, n.

In physics this looks like the Hysteresis Cycle: it rise following a known function, that,
since we always spend (dissipate) energy, will di�ers once we return (felling) to the initial
point. The area between the two curve represents the dissipated energy.
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Of course, since this is an approximated formula, one can also use other formulas leading
for example to having other Rest, for example reducing it as much as possible (as I'll show
in a while going Rational).

I skip the proof by induction because, once again, all depends on the Binomial Develop
Rule.

And still if will be interesting to see the parallel to what was known as the "In�nite De-
scent" since I've also shown in the Vol.1 how to go Rational with the Sum, one can imag-
ine and try to rewrite all in terms of my Rational Step Sum, seeing that moving of 1/K
step, rising K we can reduce the Rest to Littlest and Littlest values, till 0 when we push
at the limit for K → ∞ and we will no longer have a REST.

Since I hate professors leave to the Diligent Students the Rest of the Proof (as an exercise)
I'll do all the (trivial) job as soon as I have time.
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Chapt.21: List of Known, and New Rules for Sums and Step Sums

Here I remember a short list of the known Sum's rules. Some of them will LEFT UNCHANGED
the RESULT of the NEW SUM, some will modify it. All this are process that Cut, Split,
Stretch, Scale the Area Bellow the �rst derivative so we can �gure them out also painting
a picture on a Cartesian Plane.

1 - Ordinal Rules, based on known properties:

Rule 1.1 Calling Mn the Integer Complicate Modulus (that will be the Ordinal Number
for Power of Integers):

Mn = (xn − (x− 1)n)

And Calling Mn,K the Rational Complicate Modulus (Ordinal for Power of Rational):

Mn,K =

(
n

1

)
xn−1

Km
+

(
n

2

)
xn−2

K2m
+

(
n

3

)
xn−3

K3m
+ ...+ /− 1

Kn∗m

if A ∈ N+ then:

An =
A∑

x=1

Mn =
A∑

x=1/K

Mn,K = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

x=0

nxn−1dx

Rule 1.2: if A =
(
P
K

)
with P,Q ∈ N+ so if A ∈ Q+ − N+ then we can write An as

An =

(
P

K

)
=

A∑
x=1/Km

Mn,Km = lim
K→∞

A∑
x=1/K

Mn,Km =

∫ A

x=0

nxn−1dx

Rule 1.3: if A ∈ R−Q+ and A = KnownIrrational then we can again use the Rule 1.2,
having an irrational Step Sum, so having Irrational Lower and Upper Limit, and a Finite
Integer Number A ∗Km of Irrational Step.

An =
A∑

x=1/K

Mn,K = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

x=0

nxn−1dx

Rule 1.4: if A ∈ R−Q+ and A ̸= KnownIrrational then we have just one way to write
it, so via Limits so Integrals:

An = lim
K→∞

A∑
x=1/K

Mn,K =

∫ A

x=0

nxn−1dx
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2 - Interesting, known, Rules (In Number Theory there are, of course, more known
rules).

One of those we need to remember is: an integer A has an unique factorization

Rule 2.1: If A is not a prime, so for example A = π1 ∗ π2 than its power can be
represented as a product of proper Sums.
Taking as example A2:

A2 =
A∑

x=1

(2x− 1)

Follows immediately that it can be divided in a product of 2 sums

A2 = (π1)
2 ∗ (π2)

2 =

π1∑
x=1

(2x− 1) ∗
π2∑
x=1

(2x− 1)

Of course more factors, more sums.

2.2: If An = πn
1 + πn

2

then also the sum can be divided, but this happen just for n = 2 as a consequence of Fer-
mat's Last Theorem Proof:

A2 =
A∑

x=1

(2x− 1) =

π1∑
x=1

(2x− 1) +

π2∑
x=1

(2x− 1)

Rule 3: How to GROUP, or CUT, a SUM :

Sums are interesting since is very easy to be Grouped or Cut without changing the result:

Starting from the known in case n = 2 and A = π1 ∗ π2 we can re-use the sum identity we
already know from the RULE 2.1:

A2 =

π1∑
x=1

(2x− 1) ∗
π2∑
x=1

(2x− 1) =

And since independently by how we call the index x or r, it is a mute variable, we can use
just one index: x, to have:

A2 =

π1∑
x=1

(2x− 1) ∗
π2∑
x=1

(2x− 1) =

=

π1∑
x=1

(2x− 1) ∗

(
π1∑
x=1

(2x− 1) +

π2∑
x=π1+1

(2x− 1)

)
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I remember now how is possible to manipulate a Sum equal to a Power of A without chang-
ing the result of the Sum, so having back again the same Power of Integer, or Rational A.

π2
1 ∗

(
π1∑
x=1

(2x− 1) +

π2∑
x=π1+1

(2x− 1)

)
= (π1)

2 ∗ (π2)
2

so:

π1∑
x=1

(2x− 1) +

π2∑
x=π1+1

(2x− 1) = (π2)
2

That's very easy but will help us in the next tricks I'll present.

Rule.4: Multiply the Sum by A is equal to Multiply All the internal Terms by A (so both
type index dependent and constant ones)

(
A∑

x=1

(2x− 1)

)
∗ A =

A∑
x=1

(2xA− A)

Rule.5: If we Change ONLY the upper limit of the Sum:

This manipulation will produce di�erent e�ects on the result of the sum:

- Rule 5.1 If we multiply the Upper Limit A by itself, or if we make a Power of
it :

If n is the exponent of the original sum:

An =
A∑

x=1

(xn − (x− 1)n)

If we change the Upper Limit from A to Ap we have:

Ap∑
x=1

(xn − (x− 1)n) = A(pn)
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Example 1: if we have:

A2 =
A∑

x=1

(2x− 1)

then taking as new upper limit A2 we have:

A∗A∑
x=1

(2x− 1) = A4

- Rule 5.2 What happen if we multiply the upper limit A by an integer P :
Is trivial again: the result of the sum change from An to (A ∗ P )n

Rule.5.3: Multiply Both the Lower and the Upper Limit by an integer P change the Re-
sult of the Sum.

For example if we keep:

A2 =
A∑

x=1

(2x− 1)

if we multiply both lower and upper limit by P:

A∗P∑
x=1∗P

(2 ∗ P ∗X − 1)

We have no longer a square:

Table 15: Add caption
x X = 5 x 2X-1 SUM new

Square:
P*x

1 5 9 9 3
2 10 19 28 5,291503
3 15 29 57 7,549834
4 20 39 96 9,797959
5 25 49 145 12,04159
6 30 59 204 14,28286
7 35 69 273 16,52271
8 40 79 352 18,76166
9 45 89 441 21
10 50 99 540 23,2379

As you can see sometimes we have a Square again, but I left the interesting concerning on
what happen to the Vol.2

To Let the Sum give back again the same Power we just need to make the exchange of
variable X = Px, so divide each x dependent term by P (at the same power).
For example if we keep:
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A2 =
A∑

x=1

(2x− 1)

The same Power with Shifted, multiplied by P , Limits will be:

A2 =
A∗P∑

X=1∗P

(2 ∗ X

P
− 1)

Table 16: Add caption
x X = 5x 2∗X/5−1 SUM

1 5 1 1
2 10 3 4
3 15 5 9
4 20 7 16
5 25 9 25
6 30 11 36
7 35 13 49
8 40 15 64
9 45 17 81
10 50 19 100

Or if we wanna have back a Power that is P times bigger, we need to make the exchange
of variable X=Px, plus the Right Shift into the constant term in this way:

Starting from:
For example if we keep:

A2 =
A∑

x=1

(2x− 1)

- Rule 5.2 if we multiply both lower and upper limit by P, and we wanna be sure we will
have always back a Power of an integer we need to arrange the Constant Term too as in
the following example:

A∗P∑
x=1∗P

(2 ∗ P ∗X − P 2) = (A ∗ P )2

The following RULES, valid for the SUM that are EQUAL to a POWER of
INTEGERS, are probably less known, and will be useful for solving Several
(also very Hard) Number Theory Problems, as we will see in Vol.2: RATIO-
NAL ANALYSIS.

It's possible to arrange, under certain conditions, the Sum Limits, and the in-
ternal Terms of the Sum to Left Unchanged the result of the Sum, Just if WE
RESPECT some RULES:
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Rule.6: Shifting of a �x value A, Both the Lower and the Upper Limit: is equal
to ADD, (or subtract) A to the Index dependent terms X where present.

- 6.1 If the index in the sum is x, Rising both Lower and Upper Limit of A is
equal to change X in (X − A).

Here an example for n = 3 on how to do if we Rise Both the limits by A and we have to
leave unchanged the result of the sum:

B3 =
B∑

X=1

3X2 − 3X + 1 =
A+B∑

X=A+1

[3(X − A)2 − 3(X − A) + 1]

The proof is simple: taking this example as reference the shift doesn't a�ect the num-
ber of step, that rest the same:

(B − 1) = A+B − (A+ 1)

Table 17: Add caption
X 3X2 − 3X + 1 SUM 3(X −A)2 − 3(X −A) + 1 SUM
1 1 1
2 7 8
3 19 27
4 37 64

A 5 61 125
A+1 6 91 216 1 1

7 127 343 7 8
8 169 512 19 27
9 217 729 37 64
10 271 1000 61 125
11 331 1331 91 216
12 397 1728 127 343
13 469 2197 169 512
14 547 2744 217 729
15 631 3375 271 1000
16 721 4096 331 1331

B 17 817 4913 397 1728
18 919 5832 469 2197
19 1027 6859 547 2744
20 1141 8000 631 3375
21 1261 9261 721 4096

A+B 22 1387 10648 817 4913

- 6.2 If the index in the sum is x, Reducing both Lower and Upper Limit of
B is equal to change x in (x + B). So if the term is 3X2, the new term will be
3(X +B)2

Here an example for n=3 on how to do if we LOWER BOTH the limits by B:

C∑
X=B+1

3X2 − 3X + 1 =
C−B∑
x=1

[3(X +B)2 − 3(X +B) + 1]
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The proof is simple: taking this example as reference the shift doesn't a�ect the num-
ber of step, that rest the same:

C − (B + 1) = C −B − 1

And the shift a�ect just each term of the sum that is "index dependent" so instead of x
we simply put x+B and nothing change.

As told we put (x−B) in case we want to RISE both the Limits of B

Rule.7: Any n-th power of integer is equal to a Sum of a linear terms; Odds or Even pow-
ers require di�erent linear terms:

Rule.7a: Any EVEN n-th power of integer A(2P ) is equal to a Sum of a linear terms (2x− 1)

Rule.7b: Any ODD n-th power of integer A(2P+1) is equal to a Sum of a linear terms (2xA− A)

ALL THE PREVIOUS RULES can be now extended to the integral / derivative process
I show pushing Sum's to the limit to discover that all that rules are already well known,
since the in�nitesimal calculus has proceeded faster than this "trivial" Rational play.

Rule 8: The Sum can be transformed in a Step Sum , Step 1/K:

In case A = P
K
, we can write:

An =

(
P

K

)n

=

P/K∑
x=1/K

Mn,K

where: where:

Mn,K =

(
n

1

)
xn−1

Km
−
(
n

2

)
xn−2

K2m
+

(
n

3

)
xn−3

K3m
+ ...+ /− 1

Kn∗m

Rule 9.1: The Step Sum, step 1/K, can be transformed in an Riemann (like)
Integral just passing to the limit for K → ∞:

An = lim
k→∞

A∑
x=1/K

Mn,K =

∫ A

0

(n ∗ xn−1)dx

Rule 9.2: As the the Recursive Sum becomes an Integral at the limit for K → ∞, the
Recursive Di�erence becomes at the limit for K → ∞ the derivative.



173

Rule 10 as extension of Rule 6: Shifting of a �x value (B for example), both the lower
and the upper limit is equal to ADD B to the Index (here x). So the Shift a�ects only in
the Index dependent Terms . Here an example for n=3 where we know that:

C∑
X=B+1

3X2 − 3X + 1 =
C−B∑
X=1

[3(X +B)2 − 3(X +B) + 1]

We can see now that this rule works also passing to the Step Sum, Step 1/K, so putting
x = X/K and then to the integral that is the limit of the Step Sum for K → ∞:

Proof:

Starting from:

lim
K→∞

C∑
x=B+1/K

(
3x2

K
− 3x

K2
+

1

K3

)
=

=

∫ C

B

(3x2)dx = x2|(C,B) = C3 −B3

Shifting the lower and the upper limit by B, and adding B at the index (here x) dependent
terms (only) we have again:

lim
k→∞

C−B∑
x=1/k

[3(x+B)2/k − 3(x+B)/k2 + 1/k3] =

=

∫ C−B

0

[3(x+B)2]dx = C3 −B3

And in general for the in�nitesimal Step dx, so in case we push the Sum to the Integral we
can write : ∫ C

B

[n ∗ x(n−1)]dx =

∫ C−B

0

[n(x+B)(n−1)]dx = Cn −Bn

While of course for the special case n = 2 for some triplets known as Pythagorean Triplets
the relation holds true also for Sums having Integers Step:

C∑
X=B+1

2X − 1 =
C−B∑
X=1

[2(X +B)− 1]

Is clearly true for any Pythagorean Triplet, f.e.x A = 3, B = 4, C = 5.
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And this because both Terms ad Limits Linearly behave.

Author Note: This can be, probably, the evidence that Fermat, while studying the prop-
erties of Powers and Integrals, got himself to this conclusion.

Of course at that time justifying the "vanishing" terms (since major orders in�nitesimal
quantity) to his colleagues was an impossible mission, so probably this can be the reason
why we haven't found his concerning about.

In the previous Rules we have seen how to Shift the Lower Limits Leaving unchanged the
result. Here an example for n=3:

C∑
B+1

3x2 − 3x+ 1 =
C−B∑
1

3(x+B)2 − 3(x+B) + 1

But while we are sure that the equality work, we do not ask ourself to what this value cor-
respond, so for example if it can be (again) equal to a Cube, or not. And this exactly what
is known as Fermat The last Theorem:

A3 =
A∑
1

3x2 − 3x+ 1 =?
C∑

B+1

3x2 − 3x+ 1 =
C−B∑
1

3(x+B)2 − 3(x+B) + 1

Where we are sure that the equality of the �rst two terms holds, and the same for the equal-
ity of the last two terms, but NOT of the equality between the �rst two, with the last two.
Fermat is for so a Special Case of a most general Shifting Rule. Wiles prove the equality is
impossible and I'll prove impossible too, for all n > 2 in a most simple way in the Vol.2,
after presenting here this last Rule.
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Rule 11: Scaling the Sum. Index Vs. Terms Scaling / Shifting Rules

We see now the Last Set of Rules will help us to work with any problem involves Powers
and Equalities:

A) - how to Scale (Up or down) the Upper Limit LEAVING THE RESULT UNCHANGED,
so Rising/Lowering the Internal Terms of the SUM (JUST).

And, what happen trying to apply two modi�cations so:

B) - how to Scale (Up or down) the Upper Limit AND shifting the Lower one, LEAVING
THE RESULT UNCHANGED, so Rising/Lowering the Internal Terms of the SUM (JUST),
that is what Fermat state in his equation.

So in other terms for the Scaling Rule A:

A1) Is it possible, and under which conditions, to: Lower the UPPER LIMIT
from A to a < A, just, leaving the result unchanged RISING the VALUE of the
INTERNAL TERM/s ?

A2) Or, vice versa, is it possible, and under which conditions, to: Rise the LOWER
LIMIT, for example from 1 to LL > 1, just LOWERING the VALUE of the IN-
TERNAL TERM/s ?

The answer, for both case, is of course YES, with a trivial solution, if we introduce the
Lowering/Rising Factor ρ = (A/a) :

A∑
1

Mn =

a=A/ρ∑
1

(
A

a

)n

Mn =
a∑
1

ρnMn = ρn
a∑
1

Mn

a∑
1

Mn =

A=a∗ρ∑
1

( a
A

)n
Mn =

A∑
1

(1/ρ)nMn = (1/ρ)n
a∑
1

Mn

As we can see the Lowering Factor ρ = (A/a) is of the same degree of the n-th Power we
are working on, and is applied on all the terms of the Sum. The Factor can be, clearly,
taken out from the Sum using the well known Sum's Rule.
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Special Case if ρ = n

Will also be immediately clear that if ρ = n it is also a factor of the binomial develop so,
for example:

a∑
1

Mn =
A∑
1

(An/an)Mn =
A∑
1

(1/ρ)Mn = (1/ρ)
a∑
1

Mn

With a = 3, A = 9, ρ = (A3/a3 = 27/9 = 3 = n) can be written as::

a3 =
a∑
1

3x2 − 3x+ 1 = A3ρ =
A∑
1

(3/ρ)x2 − (3/ρ)x+ 1/ρ) =
9∑
1

x2 − x+ 1/3

This reduction can be done each time ρ = (An/an) = n = prime due to the the Binomial
Develop property that for all n = Prime, all the binomial develop terms (di�erent from 1)
has n as common factor.

Table 18: Introducing the ρ factor in the terms
X 3X2 − 3X + 1 SUM X2 −X + 1/3 SUM
1 1 1 0,333333333 0,333333
2 7 8 2,333333333 2,666667
3 19 27 6,333333333 9

Let N be prime, we can prove that:(
N
k

)
is divisible by N for k = 1, 2, . . . , (N − 1)

Let M =
(
N
k

)
then

M =
N !

k!(N − k)!
, or equivalently N ! = MK!(N − k)!

Clearly N divides N !

Thus N divides M ∗ k!(N − k)!.

But if a Prime divides a product, then it divides at least one of the terms. Since N cannot
divide k! or (N − k)!, it must divide M .

But is there any way to re-write this formula in another way, without intro-
ducing the "trivial" ρ factor, for example changing the Index Dependent Terms
Only ?

The answer is, in general, OF COURSE NOT, since, for example, once we apply the cor-
rection on the constant term, or on the Index Dependent Terms, only, the correction is, for
sure, not a General Solution, because rising x of 1, or else, will immediately change the re-
sult of the equation, so it is no longer a general formula, but, in case, a special solution.

So the target is to �nd an Approximated Formula and, better, the Most Approximated
Formula that �xed the problem under certain conditions and that works for ALL the x of
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the same problem.

So the �rst thing we have to do is check if introducing a little as possible "Rest" we are
able to use a Reasonable Right Approximated Formula, and possible the Most Approxi-
mated one that is the one (or the set of the formulas) that once pushed to the limit will
perfectly �t the equation without Rest, as I did for the Classic Rational Sum.

From the Interesting Identity:

A∑
x=1/A

(
2x

A
− 1

A2

)
=

B−A∑
x=1/A

((
2x

A
∗ A2

(B − A)2

)
− 1

A2

A2

(B − A)2

)

Prove Pell's Equation B2 − 2A2 = 1 is:

A∑
x=1/A

(
2x

A
− 1

A2

)
=

B−A∑
x=1/A

((
2x

A
+ 1

)
− 1

A2

)

Has a Minimal Solution, then in�nite solutions with A,B ∈ N
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How to �nd a non trivial solution to Pell's Equation B2 − 2A2 = 1

In Sum:

B∑
X=1

(2X − 1)− 2 ∗
A∑

X=1

(2X − 1) = 1

B∑
X=1

(2X − 1)−
A∑

X=1

(2X − 1) =
A∑

X=1

(2X − 1) + 1

B∑
X=A+1

(2X − 1) =
A∑

X=1

(2X − 1) + 1

Shifting the Lower limit:

B−A∑
X=1

(2(X + A)− 1) =
A∑

X=1

(2X − 1) + 1

Taking out the genuine square:

B−A∑
X=1

(2X − 1) + 2A ∗ (B − A) =
A∑

X=1

(2X − 1) + 1

We are looking for a solution so �rst concerning we can make is what about B − A = 1 ?

1 + 2A = A2 + 1

From where: A = 2 and then B = 3

(c) Stefano Maruelli
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From the point of view of my Complicate Modulus Algebra the question (under FLT con-
ditions so: A < B < C ∈ N+):

A3 =?C3 −B3

Has an immediate answer (after one understood my CMA and the proof into Vol.2): NO !

Because that will lead to the clearly false equality (in the integers)

A
√
A∑

x=1/
√
A

(
2x√
A

− 1

A

)
=

C
√
C∑

x=1/
√
C

(
2x√
C

− 1

C

)
−

B
√
B∑

x=1/
√
B

(
2x√
B

− 1

B

)

Since there is no common factor for C and B, therefore the only common divisor for the 3
Sum (let the step rise all the 3 irrational, coprime, Upper Limits) is 1/K with (K → ∞)
so with the known integrand factor 1/K = dx where it can satisfy (at the condition that
one of the 3 parameter ∈ R−Q,

So the only way to obtain an equality is to perform the integral:

∫ A
√
A

x=0

2xdx =

∫ C
√
C

x=0

2xdx−
∫ B

√
B

x=0

2xdx

(c) Stefano Maruelli
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Fermat the Last with Complicate Modulus Algebra:

Let A,B,C, n ∈ N+.
Fermat state that from n = 3 it is true that

Cn ̸= An +Bn

We can start to observe what happens in a genuine Power Develop, where it's always pos-
sible to �nd A and B for what:

C3 = (A+B)3 (2)

Because we can write:

C∑
X=1

(3X2 − 3X + 1) =
A+B∑
X=1

(3X2 − 3X + 1)

Is an equality for C = A + B, means that it has NO LAST ELEMENT, in fact we can
dismount both Sum, step by step (from both limits so in both directions) till having back
0 = 0, so it is also true that:

C−1∑
X=1

(3X2 − 3X + 1) =
A+B−1∑
X=1

(3X2 − 3X + 1)

C−2∑
X=1

(3X2 − 3X + 1) =
A+B−2∑
X=1

(3X2 − 3X + 1)

C−3∑
X=1

(3X2 − 3X + 1) =
A+B−3∑
X=1

(3X2 − 3X + 1)

.....

1∑
X=1

(3X2 − 3X + 1) =
1∑

X=1

(3X2 − 3X + 1)

and �nally:

0 = 0

Or vice versa from the Lower to the Upper Limit. What Fermat State is that if the equal-
ity it's True, than there must be another way to write An in terms of Cn − Bn and to
better understand who this terms are, we can transform them in Sum, and then we can
apply on the all the Sum Rule we know now (also into Rationals) to investigate why the
case n = 2 works, and why not, from n = 3. I start hereafter to show in detail the case
n = 2 leaving all the �nal proof to the Vol.2 where I will show how to apply all the rules
we learn here into Vol.1.
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Fermat the Last n = 2 with Complicate Modulus Algebra CMA):

1) Why Fermat n = 2 admit solutions:

Let A < B < C ∈ N+, n = 2 Prove with the CMA that the following Fermat's equation
can be true into the integers.

A2 = C2 +B2 (1)

If and only if A,B,C ∈ N+, then we can rewrite the (1) as,

A∑
X=1

(2X − 1) =
C∑

X=1

(2X − 1)−
B∑

X=1

(2X − 1) (1b)

On what we can apply the Direct Cut:

A∑
X=1

(2X − 1) =
C∑

X=B+1

(2X − 1) (1c)

On what we can apply the Limit Shift, then expel the rest, an then again):

A∑
X=1

(2X − 1) =
C−B∑
X=1

(2(X +B)− 1) (1d)

A∑
X=1

(2X − 1) =
C−B∑
X=1

(2X − 1) + 2B(C −B) (1e)

A∑
X=C−B+1

(2X − 1) = 2B(C −B) (1f)

A+B−C∑
X=1

(2(X + C −B)− 1) = 2B(C −B) (1g)

A+B−C∑
X=1

(2X − 1) + 2(A+B − C)(C −B) = 2B(C −B) (1i)

A+B−C∑
X=1

(2X − 1) = 2B(C −B)− 2(A+B − C)(C −B) (1l)
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A+B−C∑
X=1

(2X − 1) = 2BC − 2B2 + 2AB − 2AC + 2B2 − 4BC + 2C2 (1m)

A2 +2AB− 2AC +B2 − 2BC +C2 = 2BC − 2B2 +2AB− 2AC +2B2 − 4BC +2C2 (1n)

A2 +���2AB−���2AC +B2 −���2BC −C2 =���2BC −���2B2 +���2AB−���2AC +���2B2 −���4BC +���2C2 (1o)

A2 +B2 − C2 = 0 (1p)

2) Why for the same reasons Fermat from n = 3 doesen't works:

Let new positive integers A < B < C ∈ N+, n = 3, the same as we did for n = 2:

A∑
X=1

(3X2 − 3X + 1) ̸=
C∑

X=1

(3X2 − 3X + 1)−
B∑

X=1

(3X2 − 3X + 1) (2)

in the case n = 3, and most in general for any n > 2

Because if we make the hypo (already with the �rst known cut):

A∑
X=1

(3X2 − 3X + 1) =
C∑

X=B+1

(3X2 − 3X + 1) (2a)

Starting the dismounting process for both side (that has to follow all the Sum Rules I've
shown into Vol.1), we will see it stops at a last Cube, bigger than zero, proving there is an
Irreducible Rest, so proving that the equation (3) is not an equality into the integers. The
dismounting process it's easy, just little long tedious as following (after the direct cut):

Shift the lower limit:

A∑
X=1

(3X2 − 3X + 1) =
C−B∑
X=1

(3(X +B)2 − 3(X +B) + 1) (2b)

Taking out the genuine Cube of (C −B), isolating the Rest:

A∑
X=1

(3X2 − 3X + 1) =
C−B∑
X=1

(3X2 − 3X + 1) + 3B
C−B∑
X=1

(2X − 1) + 3B2(C −B) (2c)

A∑
X=C−B+1

(3X2 − 3X + 1) = 3B
C−B∑
X=1

(2X − 1) + 3B2(C −B) (2d)
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On what we have again to shift the Lower Limit of the �rst Sum to 1 having (we work just
onto the �rst sum now):

A+B−C∑
1

(3(X + C −B)2 − 3(X + C −B) + 1) =

A+B−C∑
1

(3X2 − 3X + 1) + 3B

A+B−C∑
1

(2X − 1)−

−3

A+B−C∑
1

(2X − 1) + 3 ∗ (C −B)2

putting the new terms again into the upper 2d formula, that has no space for the numeric
tag, we have:

3B

C−B∑
X=1

(2X−1)+3B2
C−B∑
X=1

1 =?

A+B−C∑
1

(3X2−3X+1)+3B

A+B−C∑
1

(2X−1)−3C

A+B−C∑
1

(2X−1)+3∗(C−B)2 (2e)

Reorganizing with the cube at in the left and all the rest on the right, with all squares
written as Sum:

A+B−C∑
1

(3X2 − 3X + 1) = 3B
C−B∑
X=1

(2X − 1) + 3(C −B)
B∑

X=1

(2X − 1)− (2fA)

−3B
A+B−C∑

1

(2X − 1) + 3C
A+B−C∑

1

(2X − 1)− 3 ∗
C−B∑
1

(2X − 1) (2fB)

(A+B−C)3 = 3(B− 1)(C−B)2+3B2(C−B)− 3B(A+B−C)2+3C(A+B−C)2 (2g)

(A+B − C)3 = 3(B − 1)(C −B)2 + 3B2(C −B)− 3(A+B − C)2(C −B) (2h)

That prove we rise a minimal, non longer reducible, Cube, but what is equal too is not
what we already prove it's true:

A3 + 3AB2 − 6ABC + 3AC2 +B3 + 3BA2 + 3BC2 − C3 − 3CA2 − 3CB2 =

= 6AB2−12ABC+6AC2+3B3−3B2+3BA2+12BC2+6BC−3C3−3C2−3CA2−12CB2

So we prove that in case the (2) is true, we will have 2 ways to write the Binomial Devel-
ope for (A+B − C)3

If you understood how CMA works, the proof is closed.

Why if you rest with the old mind, you can be convinced that we just reduce the investi-
gation in if (A+B − C) is a factor of the �rst two terms of the right hand (too):

3(B − 1)(C −B)2 + 3B2(C −B)

(A+B − C)
∈ N+ (2i)

(−6B3 + 3B2 + 3BC + 3CB2 − 3C)

A+B − C
(2l)
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And one now argue that still if we will be able to prove it is not, so we (in case) prove the
case n = 3 we have to make the same long work for any following bigger n....

I hope it is clear why we can stop to the (2H): any Genuine equation lead to an equality
has 0 in both side as last element in the dismounting process, while here we have not since
we have a di�erent number of combination (Binomial and Multinomial developes are com-
binatoric dependent theorem...)

But how remove in you any doubt of these ? Continuing from the (2h) we have:

A3 + 3AB2 − 6ABC + 3AC2 +B3 + 3BA2 + 3BC2 − C3 − 3CA2 − 3CB2 =

= 6CB2+3CA2−3C2+3C3+6BC−6BC2−3BA2−3B2−3B3−6AC2+12ABC−6AB2

So remembering we can use C3 −B3 = A3:

A3+9AB2−18ABC+9AC2+4B3+3B2+6BA2+9BC2−6BC−4C3+3C2−6CA2−9CB2 = 0
(2m)

3A3 = 9AB2 − 18ABC +9AC2 +3B2 +6BA2 +9BC2 − 6BC +3C2 − 6CA2 − 9CB2 (2n)

A3 = 3AB2 − 6ABC + 3AC2 +B2 + 2BA2 + 3BC2 − 2BC + C2 − 2CA2 − 3CB2 (2o)

A3 + 2A2(C −B)− 3A(C −B)2 = B2 + 3BC2 − 2BC + C2 − 3CB2 (2p)

A3 + 2A2(C −B)− 3A(C −B)2 = (C −B)2 + 3BC(C −B) (2q)

that is far from the original equation:

A3 +B3 − C3 = 0

we can enter into the (2q) to vanish the term A3 having:

9AB2−18ABC+9AC2+3B2+6BA2+9BC2−6BC+3C2−6CA2−9CB2 = 3C3−3B3 (2r)

3AB2 − 6ABC +3AC2 +B2 +2BA2 +3BC2 − 2BC +C2 − 2CA2 − 3CB2 = C3 −B3 (2s)

or:

A3 = 3AB2 − 6ABC + 3AC2 +B2 + 2BA2 + 3BC2 − 2BC + C2 − 2CA2 − 3CB2 (2t)

on where trying to rewrite all term in Sum, again, we can go on -ab in�nitum- trying, but
not arriving, to the condition 0 = 0 as shown in page 180.

(c) Stefano Maruelli
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A∑
x=1/A

(2x/A− 1/A2) =
C−B∑
x=1/A

(2(x+B)/A− 1/A2))

Still if it's again a simple question, we need to go deep inside the Sum Behav-
ior to show how Index Versus Terms behave.

As in my graphic style, we start to see a numerical examples for n = 3 of what happen in
case we try to modify both the Index and the Internal Terms TRYING to Left unchanged
the Result.

- We start to Lower the Upper Limit from A to a = A− 1, and we call δ = A− a

Trying to Left Unchanged the Result, we take the case n = 3 (n = 2 is a special case we
will see later), as example, knowing that in this case the second derivative is a monotone
rising curve and is Linear and equal to Y ′′ = 6X,

- and that the Second Integer derivative is (*) : Y ′′
i = 6X − 6,

(*) but remembering that from what seen in the Vol1. Chapter.12 this true just for x > n
and is NOT true for the First n− 1 Terms of the SUM.

This imply that is NO LONGER (in general) possible to "REBUILD" a Genuine Power
without the introduction of a CORRECTION PARAMETER, we know is a REST and we
are able (with modular math) to play with.

So till now we saw Rest = 0, just, operations, while this times we have to use our Compli-
cate Modulus Algebra in all it's Power, so we have to be prepared to introduce/play also
with a CORRECTION PARAMETER R let us re-write our formulas using the MOST
APPROXIMATED MODULUS (in case a Zero cannot be found with any possible Inte-
ger/Rational formula), so using the most similar approximation formula we already know,
and works, in the classic case.

So as we can see in the �rst Table: keeping for example the Cubes, so a Sums having as
terms: M3 = 3x2 − 3x+ 1

- Lowering for example the Upper Limit from A = 2 to a = 1, so δ = A− a = 1
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Fermat the Last with Complicate Modulus Algebra:

Let A < B < C ∈ N+.
Fermat state that from n = 3 it is true that

Cn ̸= An +Bn

Keep the case n = 3 as example, and rewrite it in Sums:

A3 = C3 −B3 (1)

A∑
X=1

(3X2 − 3X + 1) ̸=
C∑

X=1

(3X2 − 3X + 1)−
B∑

X=1

(3X2 − 3X + 1) (2)

Apply the direct known cut):

A∑
X=1

(3X2 − 3X + 1) =
C∑

X=B+1

(3X2 − 3X + 1) (3)

Check each member on both side:
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Maruelli's All Primes Interceptor :

Be:

z =
n!

n2
∗ δm

If n Is Not a Prime then z ∈ N (as the most famous Riemann Zeta gives negative
even)

If n IS a Prime then z ∈ Q− Nr (as the most famous Riemann Zeta gives non trivial
zeros)

where δm is the Correction Factor is de�ned to be:

δm = 1 elsewhere except in:

n = 1 where δm = 2/3 and in:

n = 4 where δm = 2/3

One example of a suitable, still if not super elegant, δm factor was given to me by Massimo
Di Paola :

δm = 1 + (2/3− 1)∗⌋(1/(1 + |(n− 1)|)) + (2/3− 1)⌊∗⌋(1/(1 + |(n− 4))|)⌊
that in xls can be written as:

δm = 1+ (2/3− 1) ∗ INT [1/(1 +ABS(B2− 1)))] + (2/3− 1) ∗ INT [1/(1 +ABS(B2− 4)))]

Riemann Hypo Proof

If you believe in the Trans�nite induction theorem, than looking to my z you've seen that
each trivial RH zero can be connected to an Integer value of my z (it is a non prime num-
ber), while each NON trivial RH zero can be connected to a Rational value of my z

So n2 for my z works as Selector for primes, and it show, by Trans�nite Induction, that
the behavior of the Real Part of S is 1/2 works as a selector too, than there cannot be
zero out of there.

In terms of my Two Hand Clock (that as shown can works also with Complex numbers),
Real Part of S is 1/2 behave as a 12 onto a classic clock, for any Prime Number.

The long chain lead to this result comes from the observation of my z onto numbers once
we use it to calculate the Number of Primes between 0 and P , or given a prime πx �nd the
next one is πx+1.
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2- How to discover the position of any primes in the primes list (what
follows are not the only known methods)

With this simple trick you can understand the position of the primes �n� in the primes ta-
ble or how many primes there where before the integer �n�:

The o�cial formula is:

Where what [X] into the braces is the non integer part of X, forced as 1

A more simple to understand method is:

- Force to 0 the integer part of Rm

- force at 1 the non integer part of the Rm value
So in case �n� is a prime it count 1, or 0 in case of non prime, so the sum from 1 to n will
return exactly the number of the primes.

Since the method start from 5 we have to add 2 to remember of:

2= prime and 3= prime, missed starting from 5:

Pi(x) =
P∑

n=5

[⌊n!
n2

⌋
−
⌊n!
n2

⌋
+
1

3

]
+ 2

That works as follow: (and where 1/3 pull decimal to 1 in case n is the prime 2 )
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3- How to �nd the next prime:

With the similar method it's possible to answer at the question:

If, for example be Pi(a) = 31 is a known prime, witch is the next prime ?

The process is the same:

- calculate the position �i� of the known �Pi� with the method (2) :

so Pos(31) = i than Pos(Pi+ 1) = (i+ 1)

- than knowing that the new position (i+1) will be �easy� to - calculate the relative prime

One of the possible the tricks is:

- Knowing that P * 0 = 0 �nd a way to force at zero any number that has a position dif-
ferent from (a+1)

so �rst step is to calculate:

This give as result:

- 0 if n < P(i+1) - 1 if n = P(i+1)

- K if n = P(i+K)

So we have to �nd a tricks that gives 0 or 1 still if n = P(i+K) and avoid the indetermi-
nate form 0/0.

For example we know that b! = 1 still if b = 0 so: int( b/b! ) avoid the form 0/0

And return 1 if b=1 since if b =1 also b! = 1! = 1. So we use the:
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This give as result:

- 0 if n <> P(i+1)

- 1 if n = P(i+1)

So to make it working itself we can put this trick into a Sum that works from known lim-
its where Pi(i+1) will be for sure present.

For example lower limit is: P(i)+1 and upper is: 2* Pi (as already proven see wikipedia)

Of course the tricks works with the upper limit till in�nite, but has no sense.

So the ��nal trick� to have the P(i+1) knowing Pi is:

All that works as a very slow computer program, so has no sense for make a real calcula-
tion, but can give you an idea of what make Primes soo hard to be discovered.

So is necessary to �process� all the numbers from 5 to X each time, and for several times. . . )

But we cannot say longer that �is impossible to �nd a formula to calculate the next prime�.
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And �nally we hazard to say that seems now more probable that there will not be an ab-
solutely easy function that feet all primes.

Of course there are other more faster algorithm to �nd primes (for example Eartostene
method) but, in my opinion, they will not give a �sense� of how prime are made as Wilkin-
son theorem (and what follow from it).

There is non o�cial formula discovered in 1964 that involves sin(x) and Integer operator
too.

4- My �nal concerning on: I try to go over saying that is more clear now why complex

numbers can well �t the primes calculation:

complex numbers, as primes, has 2 non connected �parts�:

the real one and the complex,

as prime can be connected to a number z = n!
n2 that has

an integer part, that is common to a non primes numbers,

and a non integer part that is unique and non present in non primes numbers.

(c) Stefano Maruelli
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You can �nd animated Gif, upgrade and other info at my webpage:

http://shoppc.maruelli.com/prime-study.htm

References:

There is no reference for what I invented, for all the Rest is standard Math so you can �nd
reference elsewhere on the web / books /e-books.

The most related paper I've found is:

Title: Using the Finite Di�erence Calculus to Sum Powers of Integers

Author: Lee Zia Reviewed work

Source: The College Mathematics Journal, Vol. 22, No. 4 (Sep., 1991), pp. 294-300

Published by: Mathematical Association of America Stable

http://www.jstor.org/stable/2686229

The document is interesting, require a little higher Math skill, and introduce same concept
of "�nite di�erences" you'll �nd here, but in a more general way. Unfortunately the arti-
cle stops when the thinks become interesting, so I hope to give to reader some more detail
and info on the telescopic sum properties.
Interesting papers:

- Set Theory: Counting the Uncountable Wa�e - Mathcamp 2012

http://www.math.harvard.edu/ wa�e/settheory.pdf
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